zoj3795 Grouping --- 良好的沟通,寻找最长的公路
给定一个图,为了保持图分裂至少成多个集合的集合内可以使点没有直接或间接的关系。
首先,题意可以得到图中可能含有环。该环的内侧是肯定是要被拆卸。
图点降低建DAG画画,能想象。。图从零点渗透深入,在点中的一组相同的水平是不相关,
那么题目所求的问题就转化成求图中最长路的问题了。
这个题的实质和 这题 事实上是一模一样的。
。
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#define inf 0x3f3f3f3f
#define eps 1e-6
#define ll __int64
#define M 100010//图中点数
using namespace std; int sta[M],top; //Tarjan 算法中的栈
bool vis[M]; //检查是否在栈中
int dfn[M]; //深度优先搜索訪问次序
int low[M]; //能追溯到的最早的次序
int ccnt; //有向图强连通分量个数
int id; //索引號
vector<int> e[M]; //邻接表表示
vector<int> part[M]; //获得强连通分量结果
int inpart[M]; //记录每一个点在第几号强连通分量里
int degree[M]; //记录每一个强连通分量的度
vector<int> edge[M];//缩点后建图
int ans,n,m,dp[M],in[M],point[M]; void tarjan(int x)
{
int i,j;
dfn[x]=low[x]=id++;
vis[x]=1;
sta[++top]=x;
for(i=0;i<e[x].size();i++)
{
j=e[x][i];
if(dfn[j]==-1)
{
tarjan(j);
low[x]=min(low[x],low[j]);
}
else if(vis[j])
low[x]=min(low[x],dfn[j]);
}
if(dfn[x]==low[x])
{
do
{
j=sta[top--];
vis[j]=0;
part[ccnt].push_back(j);
inpart[j]=ccnt;
point[ccnt]++;
}while(j!=x);
ccnt++;
}
} void solve(int n)
{
memset(sta,-1,sizeof sta);
memset(vis,0,sizeof vis);
memset(dfn,-1,sizeof dfn);
memset(low,-1,sizeof low);
memset(point,0,sizeof point); top=ccnt=id=0;
for(int i=1;i<=n;i++)
if(dfn[i]==-1)
tarjan(i);
} int dfs(int x)
{
if(dp[x]) return dp[x];
dp[x]=point[x];
int i;
for(i=0;i<edge[x].size();i++)
{
int tmp=edge[x][i];
dp[x]=max(dp[x],point[x]+dfs(tmp));
}
return dp[x];
} int main()
{
int n,m,i,j,a,b;
while(~scanf("%d%d",&n,&m))
{
for(i=0;i<=n;i++)
{
part[i].clear();
e[i].clear();
edge[i].clear();
}
while(m--)
{
scanf("%d%d",&a,&b);
e[a].push_back(b);
}
solve(n);
memset(in,0,sizeof in);
for(i=1;i<=n;i++)//枚举原图中的边
{
for(j=0;j<e[i].size();j++)
{
int a=inpart[i];
int b=inpart[e[i][j]];//
if(a!=b)
{
in[b]++;
edge[a].push_back(b);
}
}
}
ans=0;
memset(dp,0,sizeof dp);
for(i=0;i<ccnt;i++)//点在地图上之后的降低是由0至ccnt数
{
if(!in[i])
ans=max(ans,dfs(i));
}
printf("%d\n",ans);
}
return 0;
}
zoj3795 Grouping --- 良好的沟通,寻找最长的公路的更多相关文章
- zoj-3795-Grouping-tarjan确定最长的公路收缩
使用tarjan缩合点. 然后,dfs寻找最长的公路. 水体. . . #include<stdio.h> #include<string.h> #include<alg ...
- 使用后缀数组寻找最长公共子字符串JavaScript版
后缀数组很久很久以前就出现了,具体的概念读者自行搜索,小菜仅略知一二,不便讨论. 本文通过寻找两个字符串的最长公共子字符串,演示了后缀数组的经典应用. 首先需要说明,小菜实现的这个后缀数组算法,并非标 ...
- 九度oj题目1342:寻找最长合法括号序列II
题目1342:寻找最长合法括号序列II(25分) 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:886 解决:361 题目描述: 假如给你一个由’(‘和’)’组成的一个随机的括号序列,当然 ...
- 九度OJ 1337:寻找最长合法括号序列 (DP)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:839 解决:179 题目描述: 给你一个长度为N的,由'('和')'组成的括号序列,你能找出这个序列中最长的合法括号子序列么?合法括号序列的 ...
- ZOJ 3795 Grouping (强连通缩点+DP最长路)
<题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...
- [Jobdu] 题目1337:寻找最长合法括号序列
题目描述: 给你一个长度为N的,由’(‘和’)’组成的括号序列,你能找出这个序列中最长的合法括号子序列么?合法括号序列的含义便是,在这个序列中,所有的左括号都有唯一的右括号匹配:所有的右括号都有唯一的 ...
- 九度OJ 1342:寻找最长合法括号序列II (DP)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:898 解决:366 题目描述: 假如给你一个由'('和')'组成的一个随机的括号序列,当然,这个括号序列肯定不能保证是左右括号匹配的,所以给 ...
- 九度oj 题目1342:寻找最长合法括号序列II
题目描述: 假如给你一个由’(‘和’)’组成的一个随机的括号序列,当然,这个括号序列肯定不能保证是左右括号匹配的,所以给你的任务便是去掉其中的一些括号,使得剩下的括号序列能够左右括号匹配且长度最长,即 ...
- 九度oj 题目1337:寻找最长合法括号序列
题目描述: 给你一个长度为N的,由’(‘和’)’组成的括号序列,你能找出这个序列中最长的合法括号子序列么?合法括号序列的含义便是,在这个序列中,所有的左括号都有唯一的右括号匹配:所有的右括号都有唯一的 ...
随机推荐
- Android Studio经常使用操作技巧(不断更新)
这段时间一直在用Android Studio做一些Demo的开发.一開始从Eclipse中转向这个开发工具,各种不适应,希望此博文能够一直更新.还有网友能够分享出自己方便更好更快开发的一些技巧. 首先 ...
- RAD路线规划2016版
http://community.embarcadero.com/article/news/16211-embarcadero-rad-studio-2016-product-approach-and ...
- Silverlight技术调查(4)——完成的调查结果
原文 Silverlight技术调查(4)——完成的调查结果 客户端使用Silverlight+DXperience,可以在线编辑各种常见文本及富文本文档(doc.docx.rtf.txt.html… ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- Java 的垃圾回收机制(转)
先看一段转载,原文出自 http://jefferent.iteye.com/blog/1123677 虚拟机中的共划分为三个代:年轻代(Young Generation).年老点(Old Gener ...
- 2013 CSU校队选拔赛(1) 部分题解
A: Decimal Time Limit: 1 Sec Memory Limit: 128 MB Submit: 99 Solved: 10 [ Submit][ Status][ Web ...
- 使用commons-daemon启动、关闭java程序
系统环境: CentOS 7 X64 JDK1.8 一: 安装jsvc 下载 commons-daemon的源代码包 http://apache.fayea.com//commons/daemon/s ...
- ios添加pre和post build action
再vs中,我们可以很方便的再build前.后执行一些脚本为我们做点什么事情.再ios中怎么搞呢,哪必然是对xcode进行操作了.再google搜索了一把,有说操作Scheme的也有说再直接再targe ...
- 对数的操作 开始我的JAVA历程
package Text; public class Sumn { public static void main (String args[]){ System.out.println(" ...
- [置顶] 关于redhat系统yum源的配置1
安装过Linux软件的用户就知道,有时我们安装一个软件,需要依赖其他软件,所以必需找全所有的软件,这是一个极其麻烦的事情,有没什么方式可以让它自己去找依赖呢? 答案当然是肯定,这就需要我们配置一个神器 ...