mahout源码KMeansDriver分析之五CIMapper初探
接着上篇,继续分析代码。下面就到了MR的循环了,这里MR应该算是比较好理解的,重点是退出循环的条件设置,即如何判断前后两次中心点误差小于给定阈值。
首先,while循环:
while (iteration <= numIterations) {
conf.set(PRIOR_PATH_KEY, priorPath.toString());
String jobName = "Cluster Iterator running iteration " + iteration + " over priorPath: " + priorPath;
System.out.println(jobName);
Job job = new Job(conf, jobName);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(ClusterWritable.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(ClusterWritable.class);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
job.setMapperClass(CIMapper.class);
job.setReducerClass(CIReducer.class);
FileInputFormat.addInputPath(job, inPath);
clustersOut = new Path(outPath, Cluster.CLUSTERS_DIR + iteration);
priorPath = clustersOut;
FileOutputFormat.setOutputPath(job, clustersOut);
job.setJarByClass(ClusterIterator.class);
if (!job.waitForCompletion(true)) {
throw new InterruptedException("Cluster Iteration " + iteration + " failed processing " + priorPath);
}
ClusterClassifier.writePolicy(policy, clustersOut);
FileSystem fs = FileSystem.get(outPath.toUri(), conf);
iteration++;
if (isConverged(clustersOut, conf, fs)) {
break;
}
}
这个循环可以看出每个MR的输入都是一样的,输出为outPath+"/clusters-"+iteration ,然后每次MR后就会把同一个policy写入输出里面,循环次数加1,然后判断是否退出循环即isConverged(clustersOut,conf,fs)方法;下面看仿造版的MR。首先看Mapper:
package mahout.fansy.kmeans; import java.io.IOException;
import java.util.Iterator;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.classify.ClusterClassifier;
import org.apache.mahout.clustering.iterator.ClusterIterator;
import org.apache.mahout.clustering.iterator.ClusterWritable;
import org.apache.mahout.clustering.iterator.ClusteringPolicy;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirValueIterable;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.Vector.Element; import com.google.common.collect.Lists; public class TestCIMapper { /**
* @param args
*/ private static ClusterClassifier classifier; private static ClusteringPolicy policy; public static void main(String[] args) throws IOException {
setup();
map();
cleanup();
} /**
* 仿造setup函数
* @throws IOException
*/
public static void setup() throws IOException{ Configuration conf=new Configuration();
conf.set("mapred.job.tracker", "hadoop:9001"); // 这句是否可以去掉? String priorClustersPath ="hdfs://hadoop:9000/user/hadoop/out/kmeans-output/clusters-0";
classifier = new ClusterClassifier();
classifier.readFromSeqFiles(conf, new Path(priorClustersPath));
policy = classifier.getPolicy();
policy.update(classifier);
}
/**
* 仿造map函数
*/
public static void map(){
List<VectorWritable> vList=getInputData();
for(VectorWritable value: vList){
Vector probabilities = classifier.classify(value.get());
Vector selections = policy.select(probabilities);
for (Iterator<Element> it = selections.iterateNonZero(); it.hasNext();) {
Element el = it.next();
classifier.train(el.index(), value.get(), el.get());
}
}
} /**
* 仿造cleanup函数
*/
public static void cleanup(){
List<Cluster> clusters = classifier.getModels();
ClusterWritable cw = new ClusterWritable();
for (int index = 0; index < clusters.size(); index++) {
cw.setValue(clusters.get(index));
System.out.println("index:"+index+",cw :"+ cw.getValue().getCenter() );
}
} /**
* 获得输入数据
* @return
*/
public static List<VectorWritable> getInputData(){
String input="hdfs://hadoop:9000/user/hadoop/out/kmeans-in-transform/part-r-00000";
Path path=new Path(input);
Configuration conf=new Configuration();
List<VectorWritable> vList=Lists.newArrayList();
for (VectorWritable cw : new SequenceFileDirValueIterable<VectorWritable>(path, PathType.LIST,
PathFilters.logsCRCFilter(), conf)) {
vList.add(cw);
}
return vList;
}
}
上面的代码中的setup函数函数就是把中心点和阈值读入变量而已,比如classifier的变量如下:
其实感觉好像在前面代码的处理中没有必要一个中心点使用一个文件存储吧?这里把这些文件又都读入一个变量了,还要那么多文件干嘛呢?或许这个是某个大神的得意之作,而我还没有发现其精妙之处?还有就是前面的policy变量也应该没有必要存入到文件吧,这里的classifier变量里面都有policy变量了。
下面是map函数,在map函数之前有个getInputData方法用于获得输入数据,把输入数据存入一个变量中。然后在map中foreach读出来。
在map函数中,其实只有这三句有用:
Vector probabilities = classifier.classify(value.get());
Vector selections = policy.select(probabilities);
classifier.train(el.index(), value.get(), el.get());
第一行,没有设置到关于classifier的代码,第二行也是,第三行虽然设置了classifier中的models属性,但是没有改变其elementData中的center属性,而是改S0,S1之类的,如果这样没有改动的话,那在cleanup里面又是直接输出这个classifier的,那么就等于是没有改到中心点向量,那是怎么更新的呢?额 太困了,下次继续。。。
分享,快乐,成长
转载请注明出处:http://blog.csdn.net/fansy1990
mahout源码KMeansDriver分析之五CIMapper初探的更多相关文章
- mahout源码KMeansDriver分析之五CIMapper
接上文重点分析map操作: Vector probabilities = classifier.classify(value.get());// 第一行 Vector selections = pol ...
- mahout源码KMeansDriver分析之四
昨天说到为什么Configuration没有设置conf.set("mapred.job.tracker","hadoop:9000")仍然可以访问hdfs文件 ...
- Mahout源码MeanShiftCanopyDriver分析之二MeanShiftCanopyMapper仿造
首先更正一点,昨天处理数据的时候是有问题的,直接从网页中拷贝的文件的空格是有问题的,直接拷贝然后新建的文件中的空格可能有一个两个.三个的,所以要把两个或者三个的都换为一个,在InputMapper中下 ...
- Mahout源码目录说明&&算法集
Mahout源码目录说明 mahout项目是由多个子项目组成的,各子项目分别位于源码的不同目录下,下面对mahout的组成进行介绍: 1.mahout-core:核心程序模块,位于/core目录下: ...
- mybatis源码配置文件解析之五:解析mappers标签(解析XML映射文件)
在上篇文章中分析了mybatis解析<mappers>标签,<mybatis源码配置文件解析之五:解析mappers标签>重点分析了如何解析<mappers>标签中 ...
- MapReduce的ReduceTask任务的运行源码级分析
MapReduce的MapTask任务的运行源码级分析 这篇文章好不容易恢复了...谢天谢地...这篇文章讲了MapTask的执行流程.咱们这一节讲解ReduceTask的执行流程.ReduceTas ...
- Activity源码简要分析总结
Activity源码简要分析总结 摘自参考书籍,只列一下结论: 1. Activity的顶层View是DecorView,而我们在onCreate()方法中通过setContentView()设置的V ...
- MapReduce的MapTask任务的运行源码级分析
TaskTracker任务初始化及启动task源码级分析 这篇文章中分析了任务的启动,每个task都会使用一个进程占用一个JVM来执行,org.apache.hadoop.mapred.Child方法 ...
- TaskTracker任务初始化及启动task源码级分析
在监听器初始化Job.JobTracker相应TaskTracker心跳.调度器分配task源码级分析中我们分析的Tasktracker发送心跳的机制,这一节我们分析TaskTracker接受JobT ...
随机推荐
- ReactNavtive框架教程(2)
, alignItems: 'center' } }); 标准的 CSS 属性.尽管用CSS比在IB设置UI样式的可视化要差.但总比在viewDidLoad()方法中用代码写要好一些. 然后增加下面代 ...
- android开机启动应用和服务
注冊广播监听开机状态.启动应用和服务等: 监听开机的广播接收器: public class BootCompletedReceiver extends BroadcastReceiver{ @Over ...
- uvalive4015 (树上背包)
给一棵树,边上有权值,然后给一个权值x,问从根结点出发, 走不超过x的距离,最多能经过多少个结点. 走过的点可以重复走,所以可以从一个分支走下去,然后走回来,然后再走另一个分支 dp[u][j][0] ...
- STL algorithm算法minmax,minmax_element(36)
minmax原型: std::minmax C++11 C++14 default (1) template <class T> pair <const T&,const T ...
- django 带參数的 url
url就像筋络一样把django这个大框架的各个部分紧紧的连接成一个总体,所以要了解django从url開始是一个不错的方向. 一般的view template url的关系这里就不讲了,以下会具体介 ...
- android 编译调用C代码
博客地址:www.zalezone.cn 前言 需求来源 这几天帮别人做一个简单的androidclient,也没什么功能,主要就是调用C代码来对手机的Wifi网络进行设置.于是也就引出了技术难点所在 ...
- SICP的一些个人看法
网上搜书的时候,看到非常多人将这本书神话. 坦率地说,个人认为这本书过于学术化, 没什么实际project价值.一大堆题目也基本是高中数学竞赛题类似,浪费时间. 软件的核心技术是什么? 1> ...
- c# Use Properties Instead of Accessible Data Members
advantage of properties: 1 properties can be used in data binding, public data member can not. 2 dat ...
- ICTCLAS用的字Lucene4.9捆绑
它一直喜欢的搜索方向,虽然无法做到.但仍保持了狂热的份额.记得那个夏天.这间实验室.这一群人,一切都随风而逝.踏上新征程.我以前没有自己.面对七三分技术的商业环境,我选择了沉淀.社会是一个大机器,我们 ...
- poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)
http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...