Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 



 

In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor
of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node
x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common
ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 



For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest
common ancestor of y and z is y. 



Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 


Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,...,
N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers
whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
#include<vector>
typedef long long LL;
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
const int maxn=10005;
int n,uu,vv;
vector<int>v[maxn];
int pre[maxn],vis[maxn];
bool root[maxn];
int find_root(int x)
{
if(pre[x]!=x)
x=find_root(pre[x]);
return pre[x];
}
void Union(int x,int y)
{
x=find_root(x);
y=find_root(y);
if(x!=y) pre[y]=x;
}
void LCA(int x)
{
for(int i=0;i<v[x].size();i++)
{
LCA(v[x][i]);
Union(x,v[x][i]);
}
vis[x]=1;
if(x==uu&&vis[vv]==1)
{
printf("%d\n",find_root(vv));
return ;
}
if(x==vv&&vis[uu]==1)
{
printf("%d\n",find_root(uu));
return ;
}
}
void init()
{
REP(i,maxn)
{
v[i].clear();
pre[i]=i;
root[i]=true;
vis[i]=0;
}
}
void solve()
{
REPF(i,1,n)
{
if(root[i]==true)
{
LCA(i);
break;
}
}
// for(int i=1;i<=n;i++)
// printf("222222 %d\n",pre[i]);
}
int main()
{
int t,a,b;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
REPF(i,1,n-1)
{
scanf("%d%d",&a,&b);
v[a].push_back(b);
root[b]=false;
}
scanf("%d%d",&uu,&vv);
solve();
}
return 0;
}

POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  2. poj 1330 Nearest Common Ancestors 单次LCA/DFS

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19919   Accept ...

  3. POJ 1330 Nearest Common Ancestors(裸LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39596   Accept ...

  4. poj 1330 Nearest Common Ancestors 裸的LCA

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  5. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  6. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  7. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  8. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  9. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

随机推荐

  1. 基于visual Studio2013解决C语言竞赛题之0525拉丁方阵

     题目

  2. Codeforces 331A2 - Oh Sweet Beaverette (70 points)

    贪心搞就行,用map记录每个数出现的下标,每次都取首尾两个.将中间权值为负的删掉后取sum值最大的就行. #include<iostream> #include<algorithm& ...

  3. Dockerfile指令总结

    指令的一般格式为INSTRUCTION arguments,指令包含FROM.MAINTAINER.RUN等. FROM 格式为FROM <image>或FROM <image> ...

  4. HDU1878 欧拉回路 - from lanshui_Yang

    Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路?   Input 测试输入包含若干测试用例.每个 ...

  5. Chrome 快捷键

    chrome窗口和标签页快捷键: Ctrl+N 打开新窗口 Ctrl+T 打开新标签页 Ctrl+Shift+N 在隐身模式下打开新窗口 Ctrl+O,然后选择文件 在谷歌浏览器中打开计算机上的文件 ...

  6. 第一个hibernate文件 xml配置方法

    package com.entity; public class User { private String username; private String password; private In ...

  7. 我的Python成长之路---第一天---Python基础(作业2:三级菜单)---2015年12月26日(雾霾)

    作业二:三级菜单 三级菜单 可一次进入各个子菜单 思路: 这个题看似不难,难点在于三层循环的嵌套,我的思路就是通过flag的真假来控制每一层的循环的,简单来说就是就是通过给每一层循环一个单独的布尔变量 ...

  8. [置顶] getline函数-linux

    头文件: #include <stdio.h> 函数: ssize_t getline(char **lineptr, size_t *n, FILE *stream); eg: ssiz ...

  9. Thawte SSL123 SSL证书-中国证书.com

    Thawte SSL123 SSL证书是域名验证型证书.也是Thawte最廉价的一款证书.该证书签发方便,仅仅须要验证域名全部权就可以签发,无需提交认证文件,通常签发时间仅仅须要1-2个小时.SSL1 ...

  10. Hadoop 源码分析(二四)FSNamesystem

    以下轮到FSNamesystem 出场了. FSNamesystem.java 一共同拥有4573 行.而整个namenode 文件夹下全部的Java 程序总共也仅仅有16876 行,把FSNames ...