论文笔记 - PRISM: A Rich Class of Parameterized Submodular Information Measures for Guided Subset Selection
Motivation
与 Active Learning 类似,Target Learning 致力于 挑选外卖更“感兴趣”的数据,即人为为更重要的数据添加 bias。例如我们当前的任务目标是增强自动驾驶算法的夜间行驶性能,我们就不能单纯从未标注数据集中抽取多样性大的数据,而是要满足黑夜条件的数据。
Guided Summarization 与此类似,在进行 Summarization 的同时,也只抽取用户“感兴趣”感兴趣的内容。例如在各种内容都有的新闻中做体育相关的摘要生成,就要给算法一个与体育相关的 bias。
Guided Summarization 包括两种目标:
- query-focused:抽取的内容要和 query 相关;
- privacy-preserving: 抽取的内容要 避免 privacy 相关的内容。
Analysis
提出三种指标:
- 次模条件增长(Submodular Conditional Gain, CG),越大说明差异越大:
$$f(\mathcal{A}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P})-f(\mathcal{P})$$

- 次模交互信息(Submodular Mutual Information, MI),越大说明相似性越大:
$$I_f(\mathcal{A};\;\mathcal{Q})=f(\mathcal{A})+f(\mathcal{Q})-f(\mathcal{A}\cup\mathcal{Q})$$

- 次模条件交互信息(Submodular Conditional Mutual Information, CMI),上面二者的结合:
$$I_f(\mathcal{A};\;\mathcal{Q}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P})+f(\mathcal{Q}\cup\mathcal{P})-f(\mathcal{A}\cup\mathcal{Q}\cup\mathcal{P})-f(\mathcal{P})$$

以上三种次模函数 CG、MI、CMI 均为单调(当其中一个作为参数的子集固定)非负,因此可以用贪心算法求解。
1. 三种实例化方案
(1) Log Determinant



(2) Facility Location
MI 有两种变体:FLVMI 和 FLQMI(见上图),FLQMI 的好处在于,假如你已经选择了一个 query-relevant 的数据,仍然会选择其他的 query-relevant 数据仍可以使 MI 有所增长。
(3) GrPaph Cut
论文笔记 - PRISM: A Rich Class of Parameterized Submodular Information Measures for Guided Subset Selection的更多相关文章
- 论文笔记 - SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios
motivation Active Learning 存在的重要问题:现实数据极度不平衡,有许多类别很少见(rare),又有很多类别是冗余的(redundancy),又有些数据是 OOD 的(out- ...
- Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
- 论文笔记(1):Deep Learning.
论文笔记1:Deep Learning 2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...
随机推荐
- Taurus.MVC 微服务框架 入门开发教程:项目部署:6、微服务应用程序Docker部署实现多开。
系列目录: 本系列分为项目集成.项目部署.架构演进三个方向,后续会根据情况调整文章目录. 开源地址:https://github.com/cyq1162/Taurus.MVC 本系列第一篇:Tauru ...
- [Golang] cgo 调用 .so 捕获异常问题
最近需要在 go 中去调用 .so 库去完成一些事情,go 方面,利用 cgo 可以顺利的调用 .so 中的方法,但是有个问题是 go 没法捕获 .so 那边出现的异常.如果 .so 那边异常了,那么 ...
- 跟我学Python图像处理丨何为图像的灰度非线性变换
摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...
- DispatcherServlet 分发流程
0 太长不看版 HTTPServlet 的 Service 方法将请求按类进行分解 主要是根据HTTP方法的类型调用 doXXX 方法 GET 和 HEAD 方法需要对 if-modified-sin ...
- KingbaseES 并行查询
背景:随着硬件技术的提升,磁盘的IO能力及CPU的运算能力都得到了极大的增强,如何充分利用硬件资源为运算加速,是数据库设计过程中必须考虑的问题.数据库是IO和CPU密集型的软件,大规模的数据访问需要大 ...
- Exchange如何将邮件转发给外部邮件地址
Exchange如何将邮件转发给外部邮件地址 最近遇到一个需求.一位已经离职的员工需要将后续的邮件转发给他自己的私人邮箱.安全,行政的审核通过后,这个问题就到了技术部门了. Exchange可以很方便 ...
- (数据科学学习手札142)dill:Python中增强版的pickle
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,相信不少读者朋友们都在Pyth ...
- 2、String类
String类 String 对象用于保存字符串,也就是一组字符序列 字符串常量对象是用双引号括起来的字符序列,例如:"你好"."12.07"."bo ...
- Kafka为什么性能这么快?4大核心原因详解
Kafka的性能快这是大厂Java面试经常问的一个话题,下面我就重点讲解Kafka为什么性能这么快的4大核心原因@mikechen 1.页缓存技术 Kafka 是基于操作系统 的页缓存(page ca ...
- 第六章:Django 综合篇 - 11:分页 Paginator
分页功能是几乎所有的网站上都需要提供的功能,当你要展示的条目比较多时,必须进行分页,不但能减小数据库读取数据压力,也有利于用户浏览. Django又很贴心的为我们提供了一个Paginator分页工具, ...