Motivation

与 Active Learning 类似,Target Learning 致力于 挑选外卖更“感兴趣”的数据,即人为为更重要的数据添加 bias。例如我们当前的任务目标是增强自动驾驶算法的夜间行驶性能,我们就不能单纯从未标注数据集中抽取多样性大的数据,而是要满足黑夜条件的数据。

Guided Summarization 与此类似,在进行 Summarization 的同时,也只抽取用户“感兴趣”感兴趣的内容。例如在各种内容都有的新闻中做体育相关的摘要生成,就要给算法一个与体育相关的 bias。

Guided Summarization 包括两种目标:

  1. query-focused:抽取的内容要和 query 相关;
  2. privacy-preserving: 抽取的内容要 避免 privacy 相关的内容。

Analysis

提出三种指标:

  • 次模条件增长(Submodular Conditional Gain, CG),越大说明差异越大:

$$f(\mathcal{A}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P})-f(\mathcal{P})$$

  • 次模交互信息(Submodular Mutual Information, MI),越大说明相似性越大:

$$I_f(\mathcal{A};\;\mathcal{Q})=f(\mathcal{A})+f(\mathcal{Q})-f(\mathcal{A}\cup\mathcal{Q})$$

  • 次模条件交互信息(Submodular Conditional Mutual Information, CMI),上面二者的结合:

$$I_f(\mathcal{A};\;\mathcal{Q}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P})+f(\mathcal{Q}\cup\mathcal{P})-f(\mathcal{A}\cup\mathcal{Q}\cup\mathcal{P})-f(\mathcal{P})$$

以上三种次模函数 CG、MI、CMI 均为单调(当其中一个作为参数的子集固定)非负,因此可以用贪心算法求解。

1. 三种实例化方案

(1) Log Determinant

(2) Facility Location

MI 有两种变体:FLVMI 和 FLQMI(见上图),FLQMI 的好处在于,假如你已经选择了一个 query-relevant 的数据,仍然会选择其他的 query-relevant 数据仍可以使 MI 有所增长。

(3) GrPaph Cut

论文笔记 - PRISM: A Rich Class of Parameterized Submodular Information Measures for Guided Subset Selection的更多相关文章

  1. 论文笔记 - SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios

    motivation Active Learning 存在的重要问题:现实数据极度不平衡,有许多类别很少见(rare),又有很多类别是冗余的(redundancy),又有些数据是 OOD 的(out- ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  4. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  5. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  6. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  7. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  8. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  9. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

随机推荐

  1. HC32L110(三) HC32L110的GCC工具链和VSCode开发环境

    目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110(三) HC32L110的GCC工具链和VS ...

  2. Java连接简单使用ElasticSearch

    目录 1. 添加依赖 2. 代码,无账号密码 3. 代码,有账号密码,并且是https方式 4. 参考文章 1. 添加依赖 <!-- https://mvnrepository.com/arti ...

  3. Apache DolphinScheduler 简单任务定义及复杂的跨节点传参

    ​ 点亮 ️ Star · 照亮开源之路 GitHub:https://github.com/apache/dolphinscheduler Apache DolphinScheduler是一款非常不 ...

  4. 第四篇:理解vue代码

    解释以下代码: 实现输入框中能够打字的功能 <el-input v-model="input" placeholder="在这打字"></el ...

  5. KingbaseES ksqlrc文件介绍

    ksqlrc文件作用 ksql在连接到数据库后但在接收正常的命令之前,会尝试读取并执行该文件中的命令,如果加上-X参数,则跳过该文件. 系统级的启动文件是ksqlrc,文件在安装好的KingbaseE ...

  6. Windows 2012 R2 iSCSI server

     Windows 2012 R2可以充当一台简单的SAN,提供iSCSI方式的连接,供客户端使用.不确定是否有人会这么使用,但至少在做实验的时候我觉得挺方便的.不用再像以前专门安装windows ...

  7. filebeat读取超链接日志 symlinks

    filebeat读取超链接日志文件,还需要增加配置上额外的参数:symlinks: true 符号链接选项允许Filebeat除常规文件外,可以收集符号链接.收集符号链接时,即使报告了符号链接的路径, ...

  8. MySQL读写分离之——ProxySQL

    文章转载自:https://blog.csdn.net/u012280685/article/details/113520692?spm=1001.2014.3001.5501 实现一个简单的读写分离 ...

  9. GitLab基础知识

    GitLab基本介绍 GitLab是利用Ruby on Rails一个开源的版本管理系统,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目. 与Github类似,GitLab ...

  10. Elasticsearch中字段的类型

    在Elasticsearch中,每一个字段都有一个类型(type).以下为Elasticsearch中可以使用的类型: