Numpy数据存取

•NumPy的随机数函数

a = np.random.rand(1,2,3)
print(a)
#[[[0.03339719 0.72784732 0.47527802]
# [0.6456671 0.65639799 0.01300073]]] a = np.random.randn(1,2,3)
print(a)
#[[[ 0.59115211 -0.40289048 1.34532466]
# [-0.04616715 -0.64066822 -1.09722129]]] a = np.random.randint(100,200,(3,4))
print(a)
#[[161 131 187 134]
# [156 114 104 180]
# [182 163 158 121]] #随机数种子,10是给定的种子值
np.random.seed(10)
a = np.random.randint(100,200,(3,4))
print(a)
#[[109 115 164 128]
# [189 193 129 108]
# [173 100 140 136]]

a = np.random.randint(100,200,(3,4))
print(a)
#[[184 199 152 144]
# [173 171 179 144]
# [133 105 197 143]] np.random.shuffle(a)
print(a)
#[[173 171 179 144]
# [133 105 197 143]
# [184 199 152 144]] b = np.random.permutation(a)
#[[173 171 179 144]
# [133 105 197 143]
# [184 199 152 144]]
print(b)
#[[133 105 197 143]
# [173 171 179 144]
# [184 199 152 144]] a = np.random.randint(100,200,(8,))
print(a)
#[131 195 130 165 177 107 197 132] b = np.random.choice(a,(3,2))
print(b)
#[[195 107]
# [177 197]
# [130 107]] b = np.random.choice(a,(3,2),replace=False)
#[[107 130]
# [197 132]
# [195 131]] #加权,元素出现次数越多,被抽取的概率越高
b = np.random.choice(a,(3,2),p=a/np.sum(a))
print(b)
#[[197 130]
# [131 130]
# [131 130]]

u = np.random.uniform(0,10,(3,4))
print(u)
#[[7.49328353 4.35990777 8.19266316 5.02229727]
# [2.21122875 9.61785352 9.90294149 2.44401573]
# [3.88367203 9.22037768 7.87306998 2.00241521]] u = np.random.normal(10,5,(3,4))
print(u)
#[[13.44007699 10.5502136 14.79616224 -2.17381553]
# [10.42238979 10.12351539 2.8561042 16.78322252]
# [11.90679396 6.75343566 8.01259211 14.96874378]] u = np.random.poission(2,(3,4))
print(u)
#[[4 0 1 2]
# [2 2 3 2]
# [0 0 2 3]]

•NumPy的统计函数

a = np.arange(15).reshape(3,5)
print(a)
#[[ 0 1 2 3 4]
# [ 5 6 7 8 9]
# [10 11 12 13 14]]
print(np.sum(a))
#105
print(np.sum(a,axis=0))
#[15 18 21 24 27]
print(np.sum(a,axis=1))
#[10 35 60] print(np.mean(a))
#7.0
print(np.mean(a,axis=0))
#[5. 6. 7. 8. 9.]
print(np.mean(a,axis=1))
#[ 2. 7. 12.] print(np.average(a))
#7.0
print(np.average(a,axis=0,weights=[1,2,3]))
#[ 6.66666667 7.66666667 8.66666667 9.66666667 10.66666667]

a = np.arange(12).reshape(3,4)
print(a)
#[[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]] print(np.min(a))
#0 print(np.max(a))
#11 print(np.argmin(a))
#0 print(np.argmax(a))
#11 print(np.unravel_index(10,(4,3)))
#(3,1) print(np.unravel_index(np.argmax(a),(4,3)))
#(3,2) print(np.ptp(a))
#11 print(np.median(a))
#5.5

•NumPy的梯度函数

  • np.gradient(f):计算数组f中元素的梯度,当f为多维时,返回每个维度梯度

   梯度:连续值之间的变化率,即斜率

   X坐标轴连续三个x坐标对应的Y轴值:a,b,c其中b的梯度时(c-a)/2

a = np.random.randint(0,20,(5,))
print(a)
#[ 2 10 11 14 12] print(np.gradient(a))
#[ 8. 4.5 2. 0.5 -2. ]

Numpy库基础___五的更多相关文章

  1. Numpy库基础___四

    Numpy数据存取 •数据的csv文件的存取 只能有效存取和读取一维和二维数据 a = np.arange(100).reshape(5,20) #用delimiter分割,默认为空格 np.save ...

  2. Numpy库基础___一

    ndarray一个强大的N维数组对象Array •ndarray的建立(元素默认浮点数) 可以利用list列表建立ndarray import numpy as np list =[0,1,2,3] ...

  3. Numpy库基础___三

    ndarray一个强大的N维数组对象Array •ndarray的操作 索引 a = np.arange(24).reshape((2,3,4)) print(a) #[[[ 0 1 2 3] # [ ...

  4. Numpy库基础___二

    ndarray一个强大的N维数组对象Array •ndarray的变换 x.reshape(shape)重塑数组的shape,要求元素的个数一致,不改变原数组 x = np.ones((2,3,4), ...

  5. Numpy库的学习(五)

    今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a ...

  6. $python数据分析基础——初识numpy库

    numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: ...

  7. Python基础——numpy库的使用

    1.numpy库简介:    NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的 ...

  8. 数据分析与科学计算可视化-----用于科学计算的numpy库与可视化工具matplotlib

    一.numpy库与matplotlib库的基本介绍 1.安装 (1)通过pip安装: >> pip install matplotlib 安装完成 安装matplotlib的方式和nump ...

  9. numpy库的学习笔记

    一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相 ...

随机推荐

  1. Go vs Java vs C# 语法对比

    目录 1. 说明 2. 对比 2.1 关键字(keywords) 2.1.1 Go 2.1.2 Java 2.1.3 C# 2.1.4 小结 2.2 基本数据类型 2.2.1 Go 基本数据类型 2. ...

  2. 如何通过pid定位是哪个容器

    此时,我有一个pid为28117的进程,通过pdwx命令,无法找到他所在的目录,此时我判定他是docker容器 pwdx 28117 输出如下 28117: / 通过docker ps -q命令,获取 ...

  3. Spring高级特性之四:FactoryBean和BeanFactory

    FactoryBean和BeanFactory两只是两个单词顺序不同但是内容大不相同.落脚点在后面一个单词,前面一个单词是其功能描述:FactoryBean--工厂bean,一个建工厂的bean?Be ...

  4. 从Spring容器的角度理解Dubbo扩展点的加载时机

    对于Dubbo提供的扩展点,主程序执行的过程中并没有显示调用加载的过程,无论是自激活的Filter还是自适应的ThreadPool.那么这样的扩展点在程序运行的哪个节点调用的呢?跟踪之前性能监控扩展点 ...

  5. RSA公私钥生成与使用

    参考 KeyStore 简述 Keytool 简述 Certificate Chain (证书链) 简述 详解RSA加密算法

  6. iOS 通知扩展插件

    iOS 通知扩展插件 目录 iOS 通知扩展插件 Notification Service Extension 新建一个target 代码实现 注意事项 UINotificationConentExt ...

  7. 思迈特软件Smartbi发展再提速,完成B+轮过亿战略融资

    2021年4月,思迈特软件(Smartbi)宣布完成亿级B+轮战略融资,本轮投资方为领先的全球企业级数据分析和组织智能服务平台提供商--明略科技.此前,思迈特软件曾先后获得来自价值资本.方广资本的数千 ...

  8. Shell、命令行界面、控制台什么区别

    Shell 是什么?Shell 是一个命令解释器,它为用户提供了一个向 操作系统内核发送请求以便运行程序界面系统级程序,它的作用就是遵循一定的语法将输入的命令加以解释并传给系统,他大意是指对系统的操控 ...

  9. Qt:QVector

    0.说明 template <typename T> class QVector QVector是存储同一个类型T数据的模板类,其功能是动态数组,数据在其中的存储是一系列连续的存储空间. ...

  10. SyntaxError: keyword can't be an expression

    创建字典对象时: D1=dict('name'='Bob','age'=20,'score'=90) SyntaxError: keyword can't be an expression 解决方法: ...