\(\text{Solution}\)

\[ans = \frac{1}{n}\sum_{i=1}^n n^{(i,n)} = \frac{1}{n}\sum_{d|n}n^d\varphi(\frac{n}{d})
\]

\(T\) 组数据,然而暴力计算就可以过

可靠点就用哈希表存下(然而更慢

\(\text{Code}\)

#include <cstdio>
#define RE register
#define IN inline
using namespace std;
typedef long long LL; const int P = 1e9 + 7;
int n, t, tot;
LL ans; IN int gcd(int x, int y){return (!y ? x : gcd(y, x % y));}
IN LL fpow(LL x, int y){LL s = 1; for(; y; y >>= 1, x = x * x % P) if (y & 1) s = s * x % P; return s;}
IN int getphi(int x)
{
int res = x;
for(RE int i = 2; i * i <= x; i++)
if (x % i == 0)
{
res = res / i * (i - 1);
while (x % i == 0) x /= i;
}
if (x > 1) res = res / x * (x - 1);
return res;
} int main()
{
scanf("%d", &t);
for(; t; --t)
{
scanf("%d", &n), ans = 0;
for(RE int i = 1; i * i <= n; i++)
if (n % i == 0)
{
ans = (ans + fpow(n, i) * getphi(n / i) % P) % P;
if (i * i != n) ans = (ans + fpow(n, n / i) * getphi(i) % P) % P;
}
printf("%lld\n", ans * fpow(n, P - 2) % P);
}
}

LG P4980【模板】Pólya 定理的更多相关文章

  1. 置换及Pólya定理

    听大佬们说了这么久Pólya定理,终于有时间把这个定理学习一下了. 置换(permutation)简单来说就是一个(全)排列,比如 \(1,2,3,4\) 的一个置换为 \(3,1,2,4\).一般地 ...

  2. Pólya 定理学习笔记

    在介绍\(Polya\) 定理前,先来介绍一下群论(大概了解一下就好): 群是满足下列要求的集合: 封闭性:即有一个操作使对于这个集合中每个元素操作完都使这个集合中的元素 结合律:即对于上面那个操作有 ...

  3. Burnside 引理与 Pólya 定理

    群 群的定义 在数学中,群是由一种集合以及一个二元运算所组成的,符合"群公理"的代数结构. 一个群是一个集合 \(G\) 加上对 \(G\) 的二元运算.二元运算用 \(\cdot ...

  4. 置换群 Burnside引理 Pólya定理(Polya)

    置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...

  5. 【BZOJ1478】Sgu282 Isomorphism Pólya定理神题

    [BZOJ1478]Sgu282 Isomorphism 题意:用$m$种颜色去染一张$n$个点的完全图,如果一个图可以通过节点重新标号变成另外一个图,则称这两个图是相同的.问不同的染色方案数.答案对 ...

  6. 【POJ2154】Color Pólya定理+欧拉函数

    [POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...

  7. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  8. 数学:Burnside引理与Pólya定理

    这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动 ...

  9. Burnside引理&Pólya定理

    Burnside's lemma 引例 题目描述 一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色, 问共有多少种本质不同的涂色方案. (若两种方案可通过旋转互相得到,称作本质相同的方案) 解 ...

  10. @总结 - 12@ burnside引理与pólya定理

    目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引 ...

随机推荐

  1. 树莓派编译opencv4

    前言 我用的是 树莓派3b 编译的 opencv4.1.0,如果不想编译可以直接下载我编译好的. 下载地址 直接 make install,或者按照我后续步骤复制动态链接库. 准备 需要调节虚拟内存大 ...

  2. 【SQL进阶】【表默认值、自增、修改表列名、列顺序】Day02:表与索引操作

    一.表的创建.修改与删除 1.创建一张新表 [设置日期默认值.设置id自增] [注意有备注添加备注COMMENT] CREATE TABLE user_info_vip( id int(11) pri ...

  3. 【每日一题】2021年12月6日-剑指 Offer 22. 链表中倒数第k个节点

    输入一个链表,输出该链表中倒数第k个节点.为了符合大多数人的习惯,本题从1开始计数,即链表的尾节点是倒数第1个节点. 例如,一个链表有 6 个节点,从头节点开始,它们的值依次是 1.2.3.4.5.6 ...

  4. 9V,12V输入充3.7V单节锂电池电路和芯片

    锂电池充电管理电路中,普遍常用使用最多的的如PW4054这种的线性降压充电管理芯片,特点就是外围极简洁,但是只能支持USB口的输入5V了.当然也有稍微高点的PW4065,输入电压范围是4.7V-8V的 ...

  5. python3中的常见知识点1

    python3中的常见知识点1 简记一些python小知识 字符串输出 docstring(文档字符串) Lambda 函数(匿名函数) python函数之参数调用 参考链接 字符串输出 1.r'原始 ...

  6. pandas中groupby的使用

    一.缘由 在爬取大量的数据之后,需要对数据进行分组的处理,于是就使用了groupby,但是我需要的并不是分组之后数据的聚合分析,我需要的是原生的某些数据.但是却找不到网上的相关案例.于是,我就自己尝试 ...

  7. jQuery事件与动态效果

    目录 一:阻止后续事件执行 1.推荐使用阻止事件 2.未使用 阻止后续事件执行 3.使用阻止后续事件执行 二:阻止事件冒泡 1.什么是事件冒泡? 2.未阻止事件冒泡 3.阻止事件冒泡 4.2.阻止冒泡 ...

  8. 前端HTML不使用flash兼容IE浏览器播放视频

    前言:最近公司项目上有个需求就是在IE8上不使用flash技术来去实现视频播放 分析:IE8不支持HTML5,所以不能使用video标签,在非IE的浏览器可以使用video标签 目录 我的解决 DEM ...

  9. .Net执行SQL/存储过程之易用轻量工具

    支持.Net/.Net Core/.Net Framework,可以部署在Docker, Windows, Linux, Mac. 由于该工具近来被广东省数个公司2B项目采用,且表现稳定,得到良好验证 ...

  10. vue 强制刷新数据 this.$forceUpdate()

    vue项目中,修改了数据可能已经渲染的地方不会发生变化,所以加上 this.$forceUpdate()可以强制刷新数据