论文信息

论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation
论文作者:Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen
论文来源:NeurIPS 2021
论文地址:download 
论文代码:download

1 域对抗介绍

  域对抗思想:

    $\begin{array}{l}\underset{D}{\operatorname{argmin}} \mathcal{L}_{D}  \\\underset{G}{\operatorname{argmin}} \mathcal{L}_{c l s}-\mathcal{L}_{D}  \\\end{array}$

  即:  

    • $\mathrm{D}$ 被优化使 $\mathcal{L}_{D}$ 最小;
    • $G$ 被优化使 $\mathcal{L}_{cls}$ 最小、$\mathcal{L}_{D}$ 最大;

  Note:

    $\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$

2 引入

  当前工作的限制:现在存在的对齐方式没有刻意的设计为最终的分类任务服务。

  对比:

  

  分类任务本质:训练网络提取类鉴别特征 ===》本文:将目标特征与 任务区分源特征[类信息] 对齐 ,而忽略与任务无关的源特征;

  Figure1 (a) :

    • 域对齐任务与分类任务是并行的;
    • 思想:通过学习域不变特征,减少域间隙,使得在源域上训练的分类器能有效的使用到目标域;
    • 缺点:简单的域对齐,可能污染分类特征;

  

3 方法

3.1 工作对比

  对比如下:

  
  Note:[ 类级别 ]
    • $f^{t}$ 代表目标域特征;
    • $f^{s}$ 代表源域分类特征,$f^{s}_{n}$ 代表源域任务无关特征,$f^{s}_{p}$ 代表源域任务相关特征;
 
  本文:通过在分类任务诱导的元知识的指导下进行特征对齐,使目标特征与任务识别源特征(即 “postive” 特征)对齐,以避免来自任务无关特征(即  “negative ”  特征)的干扰;

3.2 ToAlign 方法介绍

3.2.1 任务相关源特征

  分类器分类权重:

    $\mathbf{w}^{c l s}=\frac{\partial y^{k}}{\partial \mathbf{f}}$

  任务相关特征:

    $\mathbf{f}_{p}=\mathbf{w}_{p}^{c l s} \odot \mathbf{f}=s \mathbf{w}^{c l s} \odot \mathbf{f}$

    $ s=\sqrt{\frac{\|\mathbf{f}\|_{2}^{2}}{\left\|\mathbf{w}^{c l s} \odot \mathbf{f}\right\|_{2}^{2}}}=\sqrt{\frac{\sum_{m=1}^{M} f_{m}^{2}}{\sum_{m=1}^{M}\left(w_{m}^{c l s} f_{m}\right)^{2}}}$

  Note:任务无关特征可以表示为 $\mathbf{f}_{n}=-\mathbf{w}_{p}^{c l s} \odot \mathbf{f}$,其中 $-\mathbf{w}_{p}^{c l s}$ 会小,与任务相关的有较大的 $\mathbf{w}_{p}^{c l s}$;

3.2.2 类级域对抗

  对抗:

    $\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G^{p}\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$

  其中,$G^{p}\left(\mathbf{x}_{s}\right)=\mathbf{f}_{p}^{s}$ 表示源 $\mathbf{x}_{s}$ 的正特征。

 

论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》的更多相关文章

  1. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  2. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  3. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  4. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

  5. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

  6. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  7. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  8. 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读

    论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...

  9. 自监督学习(Self-Supervised Learning)多篇论文解读(下)

    自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...

  10. 自监督学习(Self-Supervised Learning)多篇论文解读(上)

    自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...

随机推荐

  1. hive支持的压缩算法

    压缩格式的设置 set mapred.output.compression= 压缩格式 工具 算法 扩展名 是否支持分割 Hadoop编码/解码器 default deflate .deflate N ...

  2. vim ctrl+s 不能再操作

    vim下编写代码不自觉按到Ctrl+S,此时vim就不能再操作了.发现vim下Ctrl+S是阻止之后的输入,可通过Ctrl+Q来解除.

  3. csss线条中间粗两边细

    效果 <div class="hr-line-div"></div> .hr-line-div { margin: 0 auto; height: 2px; ...

  4. Pod资源的基础管理操作(Kubernetes)

    Pod是Kubernetes API中的核心资源类型,它可以定义在JSON或者YAML格式的资源清单中,由资源管理命令进行陈述式声明管理.创建时通过create或apply命令将请求提交到API Se ...

  5. 再见IE

  6. Linux基础命令、按照软件、数据库基础操作

    一.Linux基础命令 1.防火墙 systemctl - 控制 systemd 系统与服务管理器 systemctl 可用于 检查和控制 systemd(1) 系统与服务管理器的 状态 常用的命令: ...

  7. 人森第一个iOS app,写给我家baby的!纪念一下

    用python写的,对于非专业iOS开发来说,py是个不错的选择,使用beeware框架,感觉和写前端差不多

  8. Java mysql查询数据库重复数据(单个或多个字段)

    查询表重复数据: SELECT * FROM 表1 f WHERE (f.字段1,f.字段2) in (SELECT 字段1,字段2 FROM 表1 GROUP BY 字段1,字段2 HAVING c ...

  9. 求小于N的最大素数

    问题 求小于N的最大素数 分析 枚举:从可能的集合中一一列举各元素 枚举过程中需要考虑的问题: 给出解空间 减少搜索的空间 采用合适的搜索顺序 枚举关键字(枚举核心):减少规模 代码实现 1 impo ...

  10. Javaheima20

    Java 学习内容 单元测试 反射 注解 动态代理 开发好的系统中存在很多的方法,如和对这些方法的正确性进行测试 如何在程序运行时取得到Class对象,然后取获得Class中的每个成分 注解是什么,具 ...