论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》
论文信息
论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation
论文作者:Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen
论文来源:NeurIPS 2021
论文地址:download
论文代码:download
1 域对抗介绍
域对抗思想:
$\begin{array}{l}\underset{D}{\operatorname{argmin}} \mathcal{L}_{D} \\\underset{G}{\operatorname{argmin}} \mathcal{L}_{c l s}-\mathcal{L}_{D} \\\end{array}$
即:
- $\mathrm{D}$ 被优化使 $\mathcal{L}_{D}$ 最小;
- $G$ 被优化使 $\mathcal{L}_{cls}$ 最小、$\mathcal{L}_{D}$ 最大;
Note:
$\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$
2 引入
当前工作的限制:现在存在的对齐方式没有刻意的设计为最终的分类任务服务。
对比:

分类任务本质:训练网络提取类鉴别特征 ===》本文:将目标特征与 任务区分源特征[类信息] 对齐 ,而忽略与任务无关的源特征;
Figure1 (a) :
- 域对齐任务与分类任务是并行的;
- 思想:通过学习域不变特征,减少域间隙,使得在源域上训练的分类器能有效的使用到目标域;
- 缺点:简单的域对齐,可能污染分类特征;

3 方法
3.1 工作对比
对比如下:

- $f^{t}$ 代表目标域特征;
- $f^{s}$ 代表源域分类特征,$f^{s}_{n}$ 代表源域任务无关特征,$f^{s}_{p}$ 代表源域任务相关特征;
3.2 ToAlign 方法介绍
3.2.1 任务相关源特征
分类器分类权重:
$\mathbf{w}^{c l s}=\frac{\partial y^{k}}{\partial \mathbf{f}}$
任务相关特征:
$\mathbf{f}_{p}=\mathbf{w}_{p}^{c l s} \odot \mathbf{f}=s \mathbf{w}^{c l s} \odot \mathbf{f}$
$ s=\sqrt{\frac{\|\mathbf{f}\|_{2}^{2}}{\left\|\mathbf{w}^{c l s} \odot \mathbf{f}\right\|_{2}^{2}}}=\sqrt{\frac{\sum_{m=1}^{M} f_{m}^{2}}{\sum_{m=1}^{M}\left(w_{m}^{c l s} f_{m}\right)^{2}}}$
Note:任务无关特征可以表示为 $\mathbf{f}_{n}=-\mathbf{w}_{p}^{c l s} \odot \mathbf{f}$,其中 $-\mathbf{w}_{p}^{c l s}$ 会小,与任务相关的有较大的 $\mathbf{w}_{p}^{c l s}$;
3.2.2 类级域对抗
对抗:
$\mathcal{L}_{D}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)=-\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log \left(D\left(G^{p}\left(\mathbf{x}_{s}\right)\right)\right)\right]-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(G\left(\mathbf{x}_{t}\right)\right)\right)\right]$
其中,$G^{p}\left(\mathbf{x}_{s}\right)=\mathbf{f}_{p}^{s}$ 表示源 $\mathbf{x}_{s}$ 的正特征。
论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》的更多相关文章
- 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》
论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...
- 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...
- 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...
- 论文笔记:Unsupervised Domain Adaptation by Backpropagation
14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...
- CVPR2020论文解读:三维语义分割3D Semantic Segmentation
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3 ...
- 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》
论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...
- Domain Adaptation (3)论文翻译
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...
- 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(下)
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(上)
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...
随机推荐
- hive支持的压缩算法
压缩格式的设置 set mapred.output.compression= 压缩格式 工具 算法 扩展名 是否支持分割 Hadoop编码/解码器 default deflate .deflate N ...
- vim ctrl+s 不能再操作
vim下编写代码不自觉按到Ctrl+S,此时vim就不能再操作了.发现vim下Ctrl+S是阻止之后的输入,可通过Ctrl+Q来解除.
- csss线条中间粗两边细
效果 <div class="hr-line-div"></div> .hr-line-div { margin: 0 auto; height: 2px; ...
- Pod资源的基础管理操作(Kubernetes)
Pod是Kubernetes API中的核心资源类型,它可以定义在JSON或者YAML格式的资源清单中,由资源管理命令进行陈述式声明管理.创建时通过create或apply命令将请求提交到API Se ...
- 再见IE
- Linux基础命令、按照软件、数据库基础操作
一.Linux基础命令 1.防火墙 systemctl - 控制 systemd 系统与服务管理器 systemctl 可用于 检查和控制 systemd(1) 系统与服务管理器的 状态 常用的命令: ...
- 人森第一个iOS app,写给我家baby的!纪念一下
用python写的,对于非专业iOS开发来说,py是个不错的选择,使用beeware框架,感觉和写前端差不多
- Java mysql查询数据库重复数据(单个或多个字段)
查询表重复数据: SELECT * FROM 表1 f WHERE (f.字段1,f.字段2) in (SELECT 字段1,字段2 FROM 表1 GROUP BY 字段1,字段2 HAVING c ...
- 求小于N的最大素数
问题 求小于N的最大素数 分析 枚举:从可能的集合中一一列举各元素 枚举过程中需要考虑的问题: 给出解空间 减少搜索的空间 采用合适的搜索顺序 枚举关键字(枚举核心):减少规模 代码实现 1 impo ...
- Javaheima20
Java 学习内容 单元测试 反射 注解 动态代理 开发好的系统中存在很多的方法,如和对这些方法的正确性进行测试 如何在程序运行时取得到Class对象,然后取获得Class中的每个成分 注解是什么,具 ...