cs231n spring 2017 lecture3 Loss Functions and Optimization
1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好。
几种典型的loss function:
1)Multiclass SVM loss:一般的SVM是针对0、1两类标签,现在是把它拓展到n类标签。它的物理意义是:现在要预测一个样本的标签,根据之前训练出的权重求出这个样本在所有标签的得分,正确的标签的得分如果大于其他标签的得分(往往还会加一个safety margin,就是要求要足够大),则loss function不增加;否则loss function就会增加其他标签的得分超过正确标签的得分的差值。这种loss function的取值从0到无穷大。在初始化训练的时候,权重W往往被设计成很小的随机数,所以计算出的每个标签的得分都接近0,在这种情况下,如果标签数为n,正确的标签和其他标签比较了n-1次,每次比较的得分差值都小于safety margin(假设safety margin是1),则loss function的值为n-1,
2) Softmax (cross-entropy) loss :在深度学习里很常用。把计算出的分数带入到softmax函数里,这个描述了“概率”,最终的loss function就是对softmax函数取负log。这里的概率加了引号是因为这只是一种对0~1之间取值且累加和为1的变量的诠释。事实上,当正则化项的权重增加时,优化出的W会变小,对于每个类别softmax loss会更接近。所以softmax loss对不同类别的排序才重要,具体数值并不重要。
两种loss funciton的实际表现差不多,不同的人有不同偏好。这两种loss function的差别,对于SVM loss来说,标签贴对就可以了,继续增加得分并不会减小loss,因为反正都已经取0了;但对于Softmax loss来说,正确标签的得分越高越好,错误标签的得分越低越好。
2. 正则化(Regularization)。同样的loss值会对应很多组不同的权重W,正则化描述了对参数的某种偏好,例如奥卡姆剃刀原则。这时候Loss function = Data loss + Regularzation。可以这么理解正则化:比如用多项式拟合数据,有两种方式抑制过拟合,一种是直接限定多项式的次数,另一种是不限定次数,但是在loss function里增加跟次数相关的一项,它会使算法更倾向于找低次数的多项式。正则化就是后一种方式。正则化可以帮助解决过拟合的问题。一般正则化项只包含W,不包含b。
3. 优化的关键是求导,有两种方式求导,一是数值方法,二是解析方法。实际应用中,用解析的方式求导,用数值的方式验证求导是否正确。每一步的迭代距离(learning rate)是hyperparameter,需要提前设定,Justin Johson说他调参的时候永远是最先检查learning rate是否大体正确。
4. Stochastic Gradient Descent (SGD):loss function是所有特征相加,当特征非常多的时候,计算就会很慢(比如图像,每个像素都是一个特征),这时候可以用一个子集(一般32/64/128个特征)来计算。
5. 图像特征:
1)Color Histogram,评估各种颜色在图像中的比重。
2)Histogram of Oriented Gradients (HoG),把图像分成一个个小方格,在每个小方格内提取边,设定边有9种朝向,评估图像局部的边界特征。物体识别中很有用。
3)Bags of Words,把图像分成一个个小方格(或者提取特征点后在特征点附近取小方格),每个方格可以用一个编码来描述,编码需要自己设计,所有的编码组成一个词典。这是从自然语言处理中衍生过来的。
cs231n spring 2017 lecture3 Loss Functions and Optimization的更多相关文章
- cs231n spring 2017 lecture3 Loss Functions and Optimization 听课笔记
1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好. 几种典型的loss function: 1)Multiclass SVM loss:一般的S ...
- CS231n笔记 Lecture 3 Loss Functions and Optimization
这一讲总体上就是引入Loss Function的概念,以及让大家对优化有一个初步的认识,和其他课程里面说的内容大同小异. Loss function Multiclass svm loss multi ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture13 Generative Models
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种“Unpooling”.“Transpose Conv ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
随机推荐
- Python说文解字_看起来有点儿像字典的元组(命名元祖)
1. 需要一个库 namedtuple: 所谓命名元组就是对于元组的每一个元素进行起名,看起来很像访问字典一样. 实例 from collections import namedtuple Stock ...
- SALESGROSSSALES_成本_利润
//获取成本GETCOST_TMP:NoConcatenateLOAD T_SAL_OUTSTOCK.LE_ID, [T_SAL_OUTSTOCK.LCY CODE], T_SAL_OUTSTOCK. ...
- c#之初识结构(Struct)
C# 结构(Struct) 首先结构是值类型数据结构.它使得一个单一变量可以存储各种数据类型的相关数据.struct 关键字用于创建结构.通俗说:结构就是一个可以包含不同数据类型的集合.它是一种可以自 ...
- c# 之循环 ,while 和do---while还有for
㈠while循环 循环条件 是个bool值,为true时执行循环,为false退出循环.break一般不单独的使用,而是跟着if判断一起使用,表示,当满足某些条件的时候,就退出循环了. 循环体 一般总 ...
- LeetCode No.160,161,162
No.160 GetIntersectionNode 相交链表 题目 编写一个程序,找到两个单链表相交的起始节点. 如下面的两个链表: 在节点 c1 开始相交. 示例 输入:intersectVal ...
- ae基础一
1.导入素材2.整理素材3.创建合成1280*720是高清的模式 也是平时都用的格式 HDV/HDTV 720 251920*1080是超清的模式格式是以16:9的格式显示的 电脑电视机都是用这个比例 ...
- python-day7爬虫基础之Ajax数据爬取
前几天一直在忙老师的项目,就没有继续学python,也没有写什么收获,今天晚上有空看看书,边看边理解着写吧: 首先说一下,我对Ajax的理解,就是有时候我们在浏览某个网页的时候,只要我们鼠标一直往下滑 ...
- Bless All
# php code $i = 2333 $myJXOI = JXOI() while($i == 2333){ ++myJXOI.score , ++myJXOI.rp , --myJXOI.常数 ...
- 4.docker 简介
1.概念 docker 提供了一个开发 打包 运行 app 的平台 通过 docker engine 把 app 和底层infrastructure隔离开来 2.docker engine 所包含的内 ...
- springmvc register过程
福建SEO:首先在AbstractHandlerMethodMapping中,在afterPropertiesSet这个钩子函数中,先初始化handlerMethods. 在detectHandler ...