如何找到Hive提交的SQL相对应的Yarn程序的applicationId
最近的工作是利用Hive做数据仓库的ETL转换,大致方式是将ETL转换逻辑写在一个hsql文件中,脚本当中都是简单的SQL语句,不包含判断、循环等存储过程中才有的写法,仅仅支持一些简单的变量替换,比如当前账期等。然后通过一个通用的shell脚本来执行hsql文件。该脚本是主要是调用了hive -f <hsql文件>来执行hsql文件中的SQL语句的,当然hive命令会通过--hivevar选项定义变量将当前账期等数值传进去供SQL使用。
简单说下环境信息,目前使用的大数据平台版本是HDP 3.1.0.0-78,Hive版本是3.1.0,而Tez版本是0.9.1。Hive 3.X系列的新特性主要包括:
1. 执行引擎不再支持mr,取而代之的是tez或者spark(在HDP平台默认是tez);
2. 不再支持胖客户端Hive CLI,被beeline取代(目前通过hive命令执行sql实际还是调用的beeline去连接hiveserver2服务);
3. 默认建表支持ACID语义;
4. 支持LLAP,即Live Long and Process,相当于内存计算,极大地优化了性能(该特性实际从Hive 2.X开始支持);
言归正传,回到本文的主题,比如Hive在运行过程中报错了,我们需要在Yarn上找到对应的application的日志以便定位问题,前提是需要知道Yarn程序对应的applicationId,但是beeline的输出信息中是没有applicationId的,那么如何找到Hive提交的SQL相对应的Yarn程序的applicationId呢?主要有以下几个步骤:
1. 我们通过shell脚本提交hsql文件时实际是通过beeline向hiveserver2服务提交hsql文件中的SQL语句,我们的shell脚本会将beeline的屏幕输出信息同时重定向到日志文件中,这个就是我们的第一个步骤的日志。我们找到这个日志文件,在其中搜索关键字"Completed executing command",可以得到queryId,其中每个SQL语句对应1个queryId,因为我们的hsql脚本中有4个SQL语句,所以搜索出来的信息如下:
INFO : Completed executing command(queryId=hive_20200502095437_1e9bf52d-e590-4519-a6e1-9e2e4ae91158); Time taken: 0.755 seconds
INFO : Completed executing command(queryId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a); Time taken: 52.929 seconds
INFO : Completed executing command(queryId=hive_20200502100121_5752f019-a6e2-463c-b413-a80bbe518a5c); Time taken: 52.66 seconds
INFO : Completed executing command(queryId=hive_20200502100428_9d4b8955-b84c-40be-a605-9ce19b4b7773); Time taken: 26.463 seconds
2. 找到对应的hiveserver2服务在哪台机器上。由于beeline是通过zookeeper随机连接一个hiveserver2服务,所以从上一步的日志中可以看到连接的是哪台机器上的hiveserver2服务。然后登录到该台主机,通过netstat和ps命令找到对应的hiveserver2进程,从ps命令输出的进程信息对应的命令行中,我们可以找到下面的参数。
-Dhive.log.dir=/var/log/hive -Dhive.log.file=hiveserver2.log
上面的参数说明了hiveserver2服务对应的日志名称和路径。这样我们就可以找到hiveserver2服务对应的日志,这是我们第二个步骤的日志。从这个日志里通过搜索关键字"callerId=<queryId>",<queryId>用上一步得到的真实的queryId替换(比如搜索"callerId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a")。我们将上面的4个queryId逐一用前述的关键字搜索,得到信息如下:
2020-05-02T10:00:30,440 INFO [Thread-536694]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=create temporary table ngdwt.rpt_to_etc_...t (Stage-1), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a }
2020-05-02T10:00:57,229 INFO [Thread-536729]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=create temporary table ngdwt.rpt_to_etc_...t (Stage-4), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a }
2020-05-02T10:03:22,043 INFO [Thread-537002]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=create temporary tabl...ov_in,a.statis_date (Stage-1), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502100121_5752f019-a6e2-463c-b413-a80bbe518a5c }
2020-05-02T10:07:39,627 INFO [Thread-537495]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=insert into ngdwt.rpt_to_etc_rece_d(re...t (Stage-1), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502100428_9d4b8955-b84c-40be-a605-9ce19b4b7773 }
可以看到第1个queryId用关键字"callerId=<queryId>"去搜索没有搜到信息,因为对应的第一个sql语句是ddl语句,不会向yarn提交程序(但是仅用"<queryId>"去搜索还是能搜到信息),后面第二个queryId搜索出来有2行,其他queryId只有1行。
可以看到这些queryId(hive命令输出信息)或者callerId(hiveserver2.log日志信息)对应的hive session和yarn application是同一个:
sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd
applicationId=application_1588062934554_53656
也就是说,同一个hsql文件中的不同SQL语句对应的是同一个hive session以及同一个yarn application.
来看下yarn web管理页面中该application的截图。

可以看到上面页面中的Name跟hiveserver2.log中的sessionName一致,Application Tags跟hiveserver2.log中的callerId(或者hive命令屏幕输出信息中的queryId)一致。
而yarn ui2中的程序信息如下:

3. 找到了applicationId就比较好办了,可以通过下面的命令将yarn日志从hdfs下载到本地(待yarn程序执行完毕)
yarn logs -applicationId application_1588062934554_53656 > application_1588062934554_53656.log
然后可以对application_1588062934554_53656.log做进一步的分析。
比如用关键字"Container: container_"搜索并去重排序后得到9个container的信息:
Container: container_e46_1588062934554_53656_01_000001 on hadoop19_45454_1588385301489
Container: container_e46_1588062934554_53656_01_000002 on hadoop31_45454_1588385300882
Container: container_e46_1588062934554_53656_01_000003 on hadoop40_45454_1588385301059
Container: container_e46_1588062934554_53656_01_000004 on hadoop27_45454_1588385300739
Container: container_e46_1588062934554_53656_01_000006 on hadoop36_45454_1588385301268
Container: container_e46_1588062934554_53656_01_000007 on hadoop57_45454_1588385301076
Container: container_e46_1588062934554_53656_01_000008 on hadoop22_45454_1588385301501
Container: container_e46_1588062934554_53656_01_000009 on hadoop31_45454_1588385300882
Container: container_e46_1588062934554_53656_01_000010 on hadoop21_45454_1588385301473
上面是该application对用的所有container.
或者用关键字"Assigning container to task:"搜索得到任务分配信息,其中container_e46_1588062934554_53656_01_000001因为是applicationmaster没有任务分配信息,其他8个container都有任务分配信息,其中container_e46_1588062934554_53656_01_000008和container_e46_1588062934554_53656_01_000009有2条记录,但attempt不同,表示这2个container里的任务之前有失败的,分别进行了2次尝试。为了简洁起见,这里仅列出搜索出来的第一条记录:
2020-05-01 22:00:40,603 [INFO] [DelayedContainerManager] |rm.YarnTaskSchedulerService|: Assigning container to task: containerId=container_e46_1588062934554_53656_01_000002, task=attempt_1588062934554_53656_1_00_000000_0, containerHost=hadoop31:45454, containerPriority= 11, containerResources=<memory:12288, vCores:1>, localityMatchType=RackLocal, matchedLocation=/default-rack, honorLocalityFlags=false, reusedContainer=false, delayedContainers=3
因为现在的Hive的执行引擎不再是mr,而是改成了tez,目前我对tez并不太熟悉,只是理解它为mr的升级版,在原来的map/reduce操作上增加了DAG,不同job之间的数据传递不必写到HDFS,而是类似数据流的方式,减少了中间环节,提升了效率。对于一个Tez程序,类似于MR程序的MRAppMaster和YarnChild进程,它会产生DAGAppMaster和TezChild进程,前者是master负责管理整个程序以及申请资源,后者是slave,负责执行具体的计算任务。
如何找到Hive提交的SQL相对应的Yarn程序的applicationId的更多相关文章
- 不care工具,在大数据平台中Hive能自动处理SQL
摘要:有没有更简单的办法,可以直接将SQL运行在大数据平台? 本文分享自华为云社区<Hive执行原理>,作者: JavaEdge . MapReduce简化了大数据编程的难度,使得大数据计 ...
- hive -- 协同过滤sql语句
hive -- 协同过滤sql语句 数据: *.3g.qq.com|腾讯应用宝|应用商店 *.91rb.com|91手机助手|应用商店 *.app.qq.com|腾讯应用宝|应用商店 *.haina. ...
- 事务控制语句,begin,rollback,savepoint,隐式提交的SQL语句
事务控制语句 在MySQL命令行的默认设置下,事务都是自动提交的,即执行SQL语句后就会马上执行COMMIT操作.因此开始一个事务,必须使用BEGIN.START TRANSACTION,或者执行SE ...
- Hive、Spark SQL、Impala比较
Hive.Spark SQL.Impala比较 Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hi ...
- Mysql 提交Big sql的过程
此处的big sql指的是单条sql的size 超过innodb_log_file_size,通过构造这样的测试,来分析mysql的提交过程. 做这个分析的起因是我不是很明白,既然mysql需要将被执 ...
- SQL相关子查询是什么?和嵌套子查询有什么区别?
目录 两者的各种叫法 相关子查询MySQL解释 相关子查询Wikipedia解释 相关子查询执行步骤拆解 相关子查询和嵌套查询的区别 参考资料 两者的各种叫法 相关子查询叫做:Correlated S ...
- LINQ To SQL在N层应用程序中的CUD操作、批量删除、批量更新
原文:LINQ To SQL在N层应用程序中的CUD操作.批量删除.批量更新 0. 说明 Linq to Sql,以下简称L2S. 以下文中所指的两层和三层结构,分别如下图所示: 准确的说,这里 ...
- 【原创】大叔经验分享(1)在yarn上查看hive完整执行sql
hive执行sql提交到yarn上的任务名字是被处理过的,通常只能显示sql的前边一段和最后几个字符,这样就会带来一些问题: 1)相近时间提交了几个相近的sql,相互之间无法区分: 2)一个任务有问题 ...
- 大数据开发实战:离线大数据处理的主要技术--Hive,概念,SQL,Hive数据库
1.Hive出现背景 Hive是Facebook开发并贡献给Hadoop开源社区的.它是建立在Hadoop体系架构上的一层SQL抽象,使得数据相关人员使用他们最为熟悉的SQL语言就可以进行海量数据的处 ...
随机推荐
- tf.train.GradientDescentOptimizer 优化器
tf.train.GradientDescentOptimizer(learning_rate, use_locking=False,name='GradientDescent') 参数: learn ...
- std::string::insert函数
string& insert (size_t pos, const string& str); string& insert (size_t pos, const string ...
- Keepalived实现Nginx负载均衡高可用
第一章:keepalived介绍 VRRP协议 目的就是为了解决静态路由单点故障问题的 第二章: keepalived工作原理 2.1 作为系统网络服务的高可用功能(failover) keepali ...
- 【Java】 Variable 变量
什么是Variable变量? - 变量是内存中的一个存储区域 - 这个存储区域内的数据允许在同一类型范围内不断变化 - 是程序最基本的存储单元,包含三个要素[变量类型][变量名][存储的值] 为什么需 ...
- Salesforce 开发 | Salesforce与微信集成实操指南
配置前须知 Salesforce通过试点对特定客户提供Lightning WeChat Messaging,该试点需要同意特定的条款.除非Salesforce宣布WeChat Messaging全面可 ...
- 从联想昭阳到MacBook Pro,致我的那些败家玩意——电脑
对于程序员来说,你懂的,电脑就是我们的女朋友,在很多层面上,它都是,打游戏.敲代码,以及看影片. 我第一台电脑是联想的笔记本(昭阳系列),花了 4000 多块买的. 那时候,家里很是缺钱,4000 多 ...
- Robberies 杭电
可怜的POIUYTREWQ最近想买下dota2的商品,但是手头缺钱.他想起了之前看过的一部大片,觉得抢银行也许是个不错的选择.他认为,坏人被抓是因为没有预先规划.于是他在之前的几个月对各大银行进行了一 ...
- 多线程高并发编程(6) -- Semaphere、Exchanger源码分析
一.Semaphere 1.概念 一个计数信号量.在概念上,信号量维持一组许可证.如果有必要,每个acquire()都会阻塞,直到许可证可用,然后才能使用它.每个release()添加许可证,潜在地释 ...
- RSA非对称可逆加密
/// <summary> /// RSA ECC /// 可逆非对称加密 /// 非对称加密算法的优点是密钥管理很方便,缺点是速度慢. /// </summary> usin ...
- Python模块---制作新冠疫情世界地图()
目录 pyecharts模块 简介 安装pyecharts 测试pyecharts模块 pyecharts实战:绘制新冠肺炎疫情地图 需求分析 请求数据 提取数据 处理数据 制作可视化地图 设置可视化 ...