最近的工作是利用Hive做数据仓库的ETL转换,大致方式是将ETL转换逻辑写在一个hsql文件中,脚本当中都是简单的SQL语句,不包含判断、循环等存储过程中才有的写法,仅仅支持一些简单的变量替换,比如当前账期等。然后通过一个通用的shell脚本来执行hsql文件。该脚本是主要是调用了hive -f <hsql文件>来执行hsql文件中的SQL语句的,当然hive命令会通过--hivevar选项定义变量将当前账期等数值传进去供SQL使用。

简单说下环境信息,目前使用的大数据平台版本是HDP 3.1.0.0-78,Hive版本是3.1.0,而Tez版本是0.9.1。Hive 3.X系列的新特性主要包括:

1. 执行引擎不再支持mr,取而代之的是tez或者spark(在HDP平台默认是tez);

2. 不再支持胖客户端Hive CLI,被beeline取代(目前通过hive命令执行sql实际还是调用的beeline去连接hiveserver2服务);

3. 默认建表支持ACID语义;

4. 支持LLAP,即Live Long and Process,相当于内存计算,极大地优化了性能(该特性实际从Hive 2.X开始支持);

言归正传,回到本文的主题,比如Hive在运行过程中报错了,我们需要在Yarn上找到对应的application的日志以便定位问题,前提是需要知道Yarn程序对应的applicationId,但是beeline的输出信息中是没有applicationId的,那么如何找到Hive提交的SQL相对应的Yarn程序的applicationId呢?主要有以下几个步骤:

1. 我们通过shell脚本提交hsql文件时实际是通过beeline向hiveserver2服务提交hsql文件中的SQL语句,我们的shell脚本会将beeline的屏幕输出信息同时重定向到日志文件中,这个就是我们的第一个步骤的日志。我们找到这个日志文件,在其中搜索关键字"Completed executing command",可以得到queryId,其中每个SQL语句对应1个queryId,因为我们的hsql脚本中有4个SQL语句,所以搜索出来的信息如下:

INFO : Completed executing command(queryId=hive_20200502095437_1e9bf52d-e590-4519-a6e1-9e2e4ae91158); Time taken: 0.755 seconds
INFO : Completed executing command(queryId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a); Time taken: 52.929 seconds
INFO : Completed executing command(queryId=hive_20200502100121_5752f019-a6e2-463c-b413-a80bbe518a5c); Time taken: 52.66 seconds
INFO : Completed executing command(queryId=hive_20200502100428_9d4b8955-b84c-40be-a605-9ce19b4b7773); Time taken: 26.463 seconds

2. 找到对应的hiveserver2服务在哪台机器上。由于beeline是通过zookeeper随机连接一个hiveserver2服务,所以从上一步的日志中可以看到连接的是哪台机器上的hiveserver2服务。然后登录到该台主机,通过netstat和ps命令找到对应的hiveserver2进程,从ps命令输出的进程信息对应的命令行中,我们可以找到下面的参数。

-Dhive.log.dir=/var/log/hive -Dhive.log.file=hiveserver2.log

上面的参数说明了hiveserver2服务对应的日志名称和路径。这样我们就可以找到hiveserver2服务对应的日志,这是我们第二个步骤的日志。从这个日志里通过搜索关键字"callerId=<queryId>",<queryId>用上一步得到的真实的queryId替换(比如搜索"callerId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a")。我们将上面的4个queryId逐一用前述的关键字搜索,得到信息如下:

2020-05-02T10:00:30,440 INFO [Thread-536694]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=create temporary table ngdwt.rpt_to_etc_...t (Stage-1), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a }

2020-05-02T10:00:57,229 INFO [Thread-536729]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=create temporary table ngdwt.rpt_to_etc_...t (Stage-4), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502095816_888a7dba-4403-439d-a3a7-f6cdc280c18a }

2020-05-02T10:03:22,043 INFO [Thread-537002]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=create temporary tabl...ov_in,a.statis_date (Stage-1), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502100121_5752f019-a6e2-463c-b413-a80bbe518a5c }

2020-05-02T10:07:39,627 INFO [Thread-537495]: client.TezClient (:()) - Submitting dag to TezSession, sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd, applicationId=application_1588062934554_53656, dagName=insert into ngdwt.rpt_to_etc_rece_d(re...t (Stage-1), callerContext={ context=HIVE, callerType=HIVE_QUERY_ID, callerId=hive_20200502100428_9d4b8955-b84c-40be-a605-9ce19b4b7773 }

可以看到第1个queryId用关键字"callerId=<queryId>"去搜索没有搜到信息,因为对应的第一个sql语句是ddl语句,不会向yarn提交程序(但是仅用"<queryId>"去搜索还是能搜到信息),后面第二个queryId搜索出来有2行,其他queryId只有1行。

可以看到这些queryId(hive命令输出信息)或者callerId(hiveserver2.log日志信息)对应的hive session和yarn application是同一个:
sessionName=HIVE-315802e2-f6e4-499d-a707-4d3057180abd
applicationId=application_1588062934554_53656

也就是说,同一个hsql文件中的不同SQL语句对应的是同一个hive session以及同一个yarn application.

来看下yarn web管理页面中该application的截图。

可以看到上面页面中的Name跟hiveserver2.log中的sessionName一致,Application Tags跟hiveserver2.log中的callerId(或者hive命令屏幕输出信息中的queryId)一致。

而yarn ui2中的程序信息如下:

3. 找到了applicationId就比较好办了,可以通过下面的命令将yarn日志从hdfs下载到本地(待yarn程序执行完毕)
yarn logs -applicationId application_1588062934554_53656 > application_1588062934554_53656.log

然后可以对application_1588062934554_53656.log做进一步的分析。
比如用关键字"Container: container_"搜索并去重排序后得到9个container的信息:
Container: container_e46_1588062934554_53656_01_000001 on hadoop19_45454_1588385301489
Container: container_e46_1588062934554_53656_01_000002 on hadoop31_45454_1588385300882
Container: container_e46_1588062934554_53656_01_000003 on hadoop40_45454_1588385301059
Container: container_e46_1588062934554_53656_01_000004 on hadoop27_45454_1588385300739
Container: container_e46_1588062934554_53656_01_000006 on hadoop36_45454_1588385301268
Container: container_e46_1588062934554_53656_01_000007 on hadoop57_45454_1588385301076
Container: container_e46_1588062934554_53656_01_000008 on hadoop22_45454_1588385301501
Container: container_e46_1588062934554_53656_01_000009 on hadoop31_45454_1588385300882
Container: container_e46_1588062934554_53656_01_000010 on hadoop21_45454_1588385301473

上面是该application对用的所有container.

或者用关键字"Assigning container to task:"搜索得到任务分配信息,其中container_e46_1588062934554_53656_01_000001因为是applicationmaster没有任务分配信息,其他8个container都有任务分配信息,其中container_e46_1588062934554_53656_01_000008和container_e46_1588062934554_53656_01_000009有2条记录,但attempt不同,表示这2个container里的任务之前有失败的,分别进行了2次尝试。为了简洁起见,这里仅列出搜索出来的第一条记录:

2020-05-01 22:00:40,603 [INFO] [DelayedContainerManager] |rm.YarnTaskSchedulerService|: Assigning container to task: containerId=container_e46_1588062934554_53656_01_000002, task=attempt_1588062934554_53656_1_00_000000_0, containerHost=hadoop31:45454, containerPriority= 11, containerResources=<memory:12288, vCores:1>, localityMatchType=RackLocal, matchedLocation=/default-rack, honorLocalityFlags=false, reusedContainer=false, delayedContainers=3

因为现在的Hive的执行引擎不再是mr,而是改成了tez,目前我对tez并不太熟悉,只是理解它为mr的升级版,在原来的map/reduce操作上增加了DAG,不同job之间的数据传递不必写到HDFS,而是类似数据流的方式,减少了中间环节,提升了效率。对于一个Tez程序,类似于MR程序的MRAppMaster和YarnChild进程,它会产生DAGAppMaster和TezChild进程,前者是master负责管理整个程序以及申请资源,后者是slave,负责执行具体的计算任务。

如何找到Hive提交的SQL相对应的Yarn程序的applicationId的更多相关文章

  1. 不care工具,在大数据平台中Hive能自动处理SQL

    摘要:有没有更简单的办法,可以直接将SQL运行在大数据平台? 本文分享自华为云社区<Hive执行原理>,作者: JavaEdge . MapReduce简化了大数据编程的难度,使得大数据计 ...

  2. hive -- 协同过滤sql语句

    hive -- 协同过滤sql语句 数据: *.3g.qq.com|腾讯应用宝|应用商店 *.91rb.com|91手机助手|应用商店 *.app.qq.com|腾讯应用宝|应用商店 *.haina. ...

  3. 事务控制语句,begin,rollback,savepoint,隐式提交的SQL语句

    事务控制语句 在MySQL命令行的默认设置下,事务都是自动提交的,即执行SQL语句后就会马上执行COMMIT操作.因此开始一个事务,必须使用BEGIN.START TRANSACTION,或者执行SE ...

  4. Hive、Spark SQL、Impala比较

    Hive.Spark SQL.Impala比较        Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hi ...

  5. Mysql 提交Big sql的过程

    此处的big sql指的是单条sql的size 超过innodb_log_file_size,通过构造这样的测试,来分析mysql的提交过程. 做这个分析的起因是我不是很明白,既然mysql需要将被执 ...

  6. SQL相关子查询是什么?和嵌套子查询有什么区别?

    目录 两者的各种叫法 相关子查询MySQL解释 相关子查询Wikipedia解释 相关子查询执行步骤拆解 相关子查询和嵌套查询的区别 参考资料 两者的各种叫法 相关子查询叫做:Correlated S ...

  7. LINQ To SQL在N层应用程序中的CUD操作、批量删除、批量更新

    原文:LINQ To SQL在N层应用程序中的CUD操作.批量删除.批量更新 0. 说明 Linq to Sql,以下简称L2S.    以下文中所指的两层和三层结构,分别如下图所示: 准确的说,这里 ...

  8. 【原创】大叔经验分享(1)在yarn上查看hive完整执行sql

    hive执行sql提交到yarn上的任务名字是被处理过的,通常只能显示sql的前边一段和最后几个字符,这样就会带来一些问题: 1)相近时间提交了几个相近的sql,相互之间无法区分: 2)一个任务有问题 ...

  9. 大数据开发实战:离线大数据处理的主要技术--Hive,概念,SQL,Hive数据库

    1.Hive出现背景 Hive是Facebook开发并贡献给Hadoop开源社区的.它是建立在Hadoop体系架构上的一层SQL抽象,使得数据相关人员使用他们最为熟悉的SQL语言就可以进行海量数据的处 ...

随机推荐

  1. 34.1 字符流-- FileRead FileWrite

    一次读取一个字符 FileReader fr = new FileReader("aa.txt"); // System.out.println(fr.read()); // Sy ...

  2. 曹工说Redis源码(5)-- redis server 启动过程解析,以及EventLoop每次处理事件前的前置工作解析(下)

    曹工说Redis源码(5)-- redis server 启动过程解析,eventLoop处理事件前的准备工作(下) 文章导航 Redis源码系列的初衷,是帮助我们更好地理解Redis,更懂Redis ...

  3. HBase Shell 十大花式玩儿法

    前言:工欲善其事必先利其器,今天给大家介绍一下HBase Shell十大花式利器,在日常运维工作中,可以试着用起来. 1. 交互模式 也就是我们最常用到的Shell命令行的方式. $ hbase sh ...

  4. Java中都通用文件下载(ContentType、文件头、response、out四步骤)

    Java中都通用文件下载(ContentType.文件头.response.out四步骤) 新浪微博:IT国子监(记得关注噢) http://weibo.com/itguozijian   我们就直接 ...

  5. AJ学IOS(02)UI之按钮操作 点击变换 移动 放大缩小 旋转

    不多说,先上图片看效果,AJ分享,必须精品 这个小程序主要实现点击方向键可以让图标上下左右动还有放大缩小以及旋转的功能,点击图片会显示另一张图片. 点击变换 其实用到了按钮的两个状态,再State C ...

  6. Keepalived实现Nginx负载均衡高可用

    第一章:keepalived介绍 VRRP协议 目的就是为了解决静态路由单点故障问题的 第二章: keepalived工作原理 2.1 作为系统网络服务的高可用功能(failover) keepali ...

  7. 【转】Centos7启动网卡(获取ip地址)

    这里之所以是查看下IP ,是我们后面要建一个Centos远程工具Xshell 连接Centos的时候,需要IP地址,所以我们这里先 学会查看虚拟机里的Centos7的IP地址 首先我们登录操作系统 用 ...

  8. python初学(三)

    1.以软科中国最好大学排名为分析对象,基于requests库和bs4库编写爬虫程序,对2015年至2019年间的中国大学排名数据进行爬取,并按照排名先后顺序输出不同年份的前10位大学信息,要求对输出结 ...

  9. R语言kohonen包主要函数介绍

    最近准备写一篇关于自组织映射 (Self-organizing map)的文章.SOM的代码很多,研究了一圈之后目前使用最顺手的是R语言的kohonen包. 这个kohonen包功能很丰富,但是接口不 ...

  10. Volatile的应用DCL单例模式(四)

    Volatile的应用 单例模式DCL代码 首先回顾一下,单线程下的单例模式代码 /** * 单例模式 * * @author xiaocheng * @date 2020/4/22 9:19 */ ...