开发环境keil4,芯片STM32F103C8T6

1、main.c

//串口实验
#include "sys.h"
#include "delay.h"
#include "key.h"
#define DC12VDO_ON() GPIO_SetBits (GPIOC, GPIO_Pin_13)
#define DC12VDO_OFF() GPIO_ResetBits (GPIOC, GPIO_Pin_13) int Index1,Index2,Index3 = ;
int time1;
unsigned char gUart_Rece_Buf1[];
unsigned char gUart_Rece_Buf2[];
unsigned char gUart_Rece_Buf3[];
int i,j=;
u8 key;
int main(void)
{
delay_init(); //延时函数初始化
sys_Init(); //系统初始化(时钟初始化、中断初始化、GPIOx初始化、串口1初始化、串口2初始化、串口3初始化)
while()
{
DC12VDO_OFF();//led常亮
key=KEY_Scan();
if(key==)
{
DC12VDO_ON();//灭led
delay_ms();//等待
}
}
}

2、key.c

#include "key.h"
#include "delay.h"
#include "sys.h"
uint8_t K1_Value;
u8 KEY_Scan(void)
{
if(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0))
{
delay_ms(); //防抖
if(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0))
{
K1_Value=;
while(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0));
}
}
else K1_Value=;
return K1_Value;
}

3、delay.c

#include "delay.h"
#include "sys.h"
////////////////////////////////////////////////////////////////////////////////// static u8 fac_us=;//us延时倍乘数
static u16 fac_ms=;//ms延时倍乘数 void delay_init() { SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SystemCoreClock/; //为系统时钟的1/8
fac_ms=(u16)fac_us*; //非OS下,代表每个ms需要的systick时钟数 } void delay_us(u32 nus)
{
u32 temp;
SysTick->LOAD=nus*fac_us; //时间加载
SysTick->VAL=0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(<<))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
} void delay_ms(u16 nms)
{
u32 temp;
SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit)
SysTick->VAL =0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(<<))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}

4、sys.c

#include "sys.h"

/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;//HSEStartUpStatus是枚举函数的参数,两个参数ERROR = 0, SUCCESS = !ERROR
/* Setup the microcontroller system. Initialize the Embedded Flash Interface,
initialize the PLL and update the SystemFrequency variable. */
//SystemInit(); /* RCC system reset(for debug purpose) */
RCC_DeInit(); //初始化RCC /* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON); /* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS)
{ /* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1); /* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1); /* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2); /* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* Enable PLL */
RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
} /* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
} /* Enable GPIOx clock */
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_AFIO , ENABLE ); /* Enable USART1&2 clocks */
// Enable GPIOA clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE );
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE ); /* Enable USART3 clocks */
// Enable GPIOB clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE );
} /*******************************************************************************
* Function Name : GPIO_Configuration
* Description : Configures the different GPIO ports.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure; //--------------------------->PB0
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure); //-------------------------USART1_TX-->PA9 , USART1_RX-->PA10
/* Configure USART1_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure); /* Configure USART1_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure); //-------------------------USART2_TX-->PA2 , USART2_RX-->PA3
/* Configure USART2_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure); /* Configure USART2_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure); //-------------------------USART3_TX-->PB10 , USART3_RX-->PB11
/* Configure USART3_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure); /* Configure USART3_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); } /*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
#define VECT_TAB_FLASH
//#define VECT_TAB_FLASH_IAP
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure; #if defined (VECT_TAB_RAM)
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#elif defined(VECT_TAB_FLASH_IAP)
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x18000);
__set_FAULTMASK();//开放总中断
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
//__set_FAULTMASK(0);//开放总中断
#endif /* Configure the NVIC Preemption Priority Bits */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); /* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure); /* Enable the USART2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART3 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
} /*******************************************************************************
* Function Name : USART1_Configuration
* Description : Configures USART1.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART1_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART1 configuration ------------------------------------------------------*/
/*
USART1 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART1 */
USART_Init(USART1, &USART_InitStructure); /* Enable USART1 Receive interrupt */
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); /* Enable the USART1 */
USART_Cmd(USART1, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART1, USART_FLAG_TC); // 清标志
} /*******************************************************************************
* Function Name : USART2_Configuration
* Description : Configures USART2.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART2_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART2 configuration ------------------------------------------------------*/
/*
USART2 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART2 */
USART_Init(USART2, &USART_InitStructure); /* Enable USART2 Receive interrupt */
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); /* Enable the USART2 */
USART_Cmd(USART2, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART2, USART_FLAG_TC); // 清标志
} /*******************************************************************************
* Function Name : USART3_Configuration
* Description : Configures USART3.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART3_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART3 configuration ------------------------------------------------------*/
/*
USART3 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART3 */
USART_Init(USART3, &USART_InitStructure); /* Enable USART3 Receive interrupt */
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); /* Enable the USART3 */
USART_Cmd(USART3, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART3, USART_FLAG_TC); // 清标志
} //BSP初始化函数
void sys_Init(void)
{
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
USART1_Configuration();
USART2_Configuration();
USART3_Configuration();
} #ifdef DEBUG
/*******************************************************************************
* Function Name : assert_failed
* Description : Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* Input : - file: pointer to the source file name
* - line: assert_param error line source number
* Output : None
* Return : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */
while ()
{
}
}
#endif /******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/

stm32:简单按键输入实现的更多相关文章

  1. STM32基本GPIO操作:按键输入(扫描+外部中断)

    (涉及专有名词较多,难免解释不到位,若有错误还请指出,谢谢!) 硬件连接图如下: 一.扫描 思路是在main函数中通过死循环来扫描端口电平状态检测,以此判断按键是否按下.实现较为简单. 1.初始化(注 ...

  2. linux下如何模拟按键输入和模拟鼠标【转】

    转自:http://www.cnblogs.com/leaven/archive/2010/11/30/1891947.html 查看/dev/input/eventX是什么类型的事件, cat /p ...

  3. linux输入子系统(input subsystem)之按键输入和LED控制

    实验现象:在控制台打印按键值,并且通过按键控制相应的LED亮灭. 1.代码 input_subsys_drv.c #include <linux/module.h> #include &l ...

  4. Python脚本控制的WebDriver 常用操作 <十二> send_keys模拟按键输入

    下面将使用WebDriver中的send_keys来模拟键盘按键输入 测试用例场景 send_keys方法可以模拟一些组合键操作: ctrl+a ctrl+c ctrl+v 等. 另外有时候我们需要在 ...

  5. 1102: 零起点学算法09——继续练习简单的输入和计算(a-b)

    1102: 零起点学算法09--继续练习简单的输入和计算(a-b) Time Limit: 1 Sec  Memory Limit: 520 MB   64bit IO Format: %lldSub ...

  6. 1101: 零起点学算法08——简单的输入和计算(a+b)

    1101: 零起点学算法08--简单的输入和计算(a+b) Time Limit: 1 Sec  Memory Limit: 128 MB   64bit IO Format: %lldSubmitt ...

  7. ADB——模拟手机按键输入

    基本命令 adb 模拟按键输入的命令主要通过 input 进行 Usage: input [<source>] <command> [<arg>...] The s ...

  8. adb命令模拟按键输入keycode

    adb命令模拟按键输入keycode 2017年05月18日 14:57:32 阅读数:1883 例子: //这条命令相当于按了设备的Backkey键 adb shell input keyevent ...

  9. adb shell命令模拟按键/输入input使用keycode 列表详解

    在adb shell里有一个非常使用的命令,模拟按键输入,这里首先不要理解为是键盘的模拟按键,下面命令的使用和键值做一个详解. input命令格式 adb shell input keyevent & ...

随机推荐

  1. 【原创】(四)Linux进程调度-组调度及带宽控制

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  2. 数据结构之HashMap

    前言 在我们开发中,HashMap是我们非常常用的数据结构,接下来我将进一步去了解HashMap的原理.结构. 1.HashMap的实现原理 HashMap底层是基于Hash表(也称“散列”)的数据结 ...

  3. mybatis深入之动态查询和连接池介绍

    mybatis深入之动态查询和连接池介绍 一.mybatis条件查询 在mybatis前述案例中,我们的查询条件都是确定的.但在实际使用的时候,我们的查询条件有可能是动态变化的.例如,查询参数为一个u ...

  4. HTML5&CCS3(2) 处理网页文件

    2.1 规划网站 为什么要创建这个站点,需要展示的内容是什么? 应该如何调整内容使之吸引期望的访问者? 需要多少个页面?网站的结构是怎样? 为页面.图像和其他外部文件设计一个简单且一致的命名规则. 2 ...

  5. SIP压力测试——奇林软件kylinPET

    一.Sip协议简介: SIP(Session Initiation Protocol,会话初始协议)是由IETF(Internet Engineering Task Force,因特网工程任务组)制定 ...

  6. java网络编程——多线程数据收发并行

    基本介绍与思路 收发并行 前一篇博客中,完成了客户端与服务端的简单TCP交互,但这种交互是触发式的:客户端发送一条消息,服务端收到后再回送一条.没有做到收发并行.收发并行的字面意思很容易理解,即数据的 ...

  7. VS2019 C++动态链接库的创建使用(1) - 创建使用dll

    静态库:函数和数据被编译进一个二进制文件,通常扩展名为.lib,在使用静态库的情况下,在编译链接可执行文件时,链接器从库中复制这些函数和数据并把它们和应用程序的其它模块组合起来创建最终的可执行文件. ...

  8. 大数据软件安装之Flume(日志采集)

    一.安装地址 1) Flume官网地址 http://flume.apache.org/ 2)文档查看地址 http://flume.apache.org/FlumeUserGuide.html 3) ...

  9. Journal of Proteome Research | Single-Shot Capillary Zone Electrophoresis−Tandem Mass Spectrometry Produces over 4400 Phosphopeptide Identifications from a 220 ng Sample (分享人:赵伟宁)

    Title: Single-Shot Capillary Zone Electrophoresis−Tandem Mass Spectrometry Produces over 4400 Phosph ...

  10. 查看oracle是否锁表以及解决方法

    Oracle数据库操作中,我们有时会用到锁表查询以及解锁和kill进程等操作,那么这些操作是怎么实现的呢?本文我们主要就介绍一下这部分内容.(1)锁表查询的代码有以下的形式: select count ...