数据准备

CREATE EXTERNAL TABLE lxw1234 (
cookieid string,
createtime string, --day
pv INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/'; DESC lxw1234;
cookieid STRING
createtime STRING
pv INT hive> select * from lxw1234;
OK
cookie1 2015-04-10 1
cookie1 2015-04-11 5
cookie1 2015-04-12 7
cookie1 2015-04-13 3
cookie1 2015-04-14 2
cookie1 2015-04-15 4
cookie1 2015-04-16 4

分析

SELECT cookieid,
createtime,
pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM lxw1234; cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 26 1 6 26
cookie1 2015-04-11 5 6 6 26 6 13 25
cookie1 2015-04-12 7 13 13 26 13 16 20
cookie1 2015-04-13 3 16 16 26 16 18 13
cookie1 2015-04-14 2 18 18 26 17 21 10
cookie1 2015-04-15 4 22 22 26 16 20 8
cookie1 2015-04-16 4 26 26 26 13 13 4
  • pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
  • pv2: 同pv1
  • pv3: 分组内(cookie1)所有的pv累加
  • pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
  • pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
  • pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,14号=14号+15号+16号=2+4+4=10

如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点。

–其他AVG,MIN,MAX,和SUM用法一样。

AVG

--AVG
SELECT cookieid,
createtime,
pv,
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
AVG(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM lxw1234;
cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1.0 1.0 3.7142857142857144 1.0 3.0 3.7142857142857144
cookie1 2015-04-11 5 3.0 3.0 3.7142857142857144 3.0 4.333333333333333 4.166666666666667
cookie1 2015-04-12 7 4.333333333333333 4.333333333333333 3.7142857142857144 4.333333333333333 4.0 4.0
cookie1 2015-04-13 3 4.0 4.0 3.7142857142857144 4.0 3.6 3.25
cookie1 2015-04-14 2 3.6 3.6 3.7142857142857144 4.25 4.2 3.3333333333333335
cookie1 2015-04-15 4 3.6666666666666665 3.6666666666666665 3.7142857142857144 4.0 4.0 4.0
cookie1 2015-04-16 4 3.7142857142857144 3.7142857142857144 3.7142857142857144 3.25 3.25 4.0

MIN

--MIN
SELECT cookieid,
createtime,
pv,
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MIN(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM lxw1234; cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 1 1 1 1
cookie1 2015-04-11 5 1 1 1 1 1 2
cookie1 2015-04-12 7 1 1 1 1 1 2
cookie1 2015-04-13 3 1 1 1 1 1 2
cookie1 2015-04-14 2 1 1 1 2 2 2
cookie1 2015-04-15 4 1 1 1 2 2 4
cookie1 2015-04-16 4 1 1 1 2 2 4

MAX

----MAX
SELECT cookieid,
createtime,
pv,
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM lxw1234; cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 7 1 5 7
cookie1 2015-04-11 5 5 5 7 5 7 7
cookie1 2015-04-12 7 7 7 7 7 7 7
cookie1 2015-04-13 3 7 7 7 7 7 4
cookie1 2015-04-14 2 7 7 7 7 7 4
cookie1 2015-04-15 4 7 7 7 7 7 4
cookie1 2015-04-16 4 7 7 7 4 4 4

Hive分析窗口函数的更多相关文章

  1. Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive中提供了越来越多的分析函数,用于完成负责的统计分析.抽时间将所有的分析窗 ...

  2. Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP

    概述 GROUPING SETS,GROUPING__ID,CUBE,ROLLUP 这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时.天.月的UV数. ...

  3. Hive学习之路 (十六)Hive分析窗口函数(四) LAG、LEAD、FIRST_VALUE和LAST_VALUE

    数据准备 数据格式 cookie4.txt cookie1, ::,url2 cookie1, ::,url1 cookie1, ::,1url3 cookie1, ::,url6 cookie1, ...

  4. Hive学习之路 (十五)Hive分析窗口函数(三) CUME_DIST和PERCENT_RANK

    这两个序列分析函数不是很常用,这里也练习一下. 数据准备 数据格式 cookie3.txt d1,user1, d1,user2, d1,user3, d2,user4, d2,user5, 创建表 ...

  5. Hive学习之路 (十四)Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

    概述 本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途. 注意: 序列函数不支持WINDOW子句.(ROWS BETWEEN) 数据 ...

  6. Hive学习之路 (十三)Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    数据准备 数据格式 cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, 创建数据库及表 create datab ...

  7. Hive(七)Hive分析窗口函数

    一数据准备 cookie1,2015-04-10,1 cookie1,2015-04-11,5 cookie1,2015-04-12,7 cookie1,2015-04-13,3 cookie1,20 ...

  8. hive Spark SQL分析窗口函数

    Spark1.4发布,支持了窗口分析函数(window functions).在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗口分 ...

  9. hive的窗口函数1

    Hive中提供了越来越多的分析函数,用于完成负责的统计分析.抽时间将所有的分析窗口函数理一遍,将陆续发布.今天先看几个基础的,SUM.AVG.MIN.MAX.用于实现分组内所有和连续累积的统计. 1. ...

随机推荐

  1. Thinkpad E40热键不能使用解决办法

    Thinkpad E40 0578M68笔记本电脑安装windows7 64bit和联想官网驱动后,键盘最上面一排热键中,除了静音.减小音量和增大音量之外,其余的热键均不可用,解决办法: 到联想官网下 ...

  2. Android长按及拖动事件探究

    Android中长按拖动还是比较常见的.比如Launcher中的图标拖动及屏幕切换,ListView中item顺序的改变,新闻类App中新闻类别的顺序改变等.下面就这个事件做一下分析. 就目前而言,A ...

  3. udev更改按键映射

    通过更改udev的规则实现敲击a键获得s的输出 安装evtest   首先安装evtest检测键盘的扫描码 123456789 # apt install evtest# sudo evtestNo ...

  4. 记录R的一些黑魔法

    通路富集结果可视化 12345678 pathway<-read.table("PTC+_transcript_pep_supp_KEGG.txt",header=T,sep ...

  5. C++走向远洋——38(用对象数组操作长方柱类)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:changfangzhu.cpp * 作者:常轩 * 微信公众号 ...

  6. 第六周学习笔记,vc各类控件的输入输出

    6w学习笔记 vc控件的输入输出 单选按钮 当单击 RadioButton 控件时,其 Checked 属性设置为 true,并且调用 Click 事件处理程序.当 Checked 属性的值更改时,将 ...

  7. Javascript学习笔记-基本概念-操作符

    1.一元操作符 (1)递增和递减操作符 只能操作一个值的操作符叫一元操作符. var age = 29; ++age; var age = 29; --age; var age = 29; var a ...

  8. 扫描神器nmap使用教程

    总结 nmap -v 详细信息输出nmap -p 指定端口nmap -iL 扫描文件中的ipnmap -exclude 不扫描某些ipnmap -Pn 使用ping扫描,显式地关闭端口扫描,用于主机发 ...

  9. [红日安全]Web安全Day8 - XXE实战攻防

    本文由红日安全成员: ruanruan 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了 ...

  10. cvc-complex-type.2.4.c: The matching wildcard is strict, but no declaration can be found for element 'mvc:resources'.

    新的错误出现  spring-mvc.xml文件 <mvc:resources mapping="/static/**" location="/static/&qu ...