There is a frog staying to the left of the string s=s1s2…sn consisting of n characters (to be more precise, the frog initially stays at the cell 0). Each character of s is either ‘L’ or ‘R’. It means that if the frog is staying at the i-th cell and the i-th character is ‘L’, the frog can jump only to the left. If the frog is staying at the i-th cell and the i-th character is ‘R’, the frog can jump only to the right. The frog can jump only to the right from the cell 0.

Note that the frog can jump into the same cell twice and can perform as many jumps as it needs.

The frog wants to reach the n+1-th cell. The frog chooses some positive integer value d before the first jump (and cannot change it later) and jumps by no more than d cells at once. I.e. if the i-th character is ‘L’ then the frog can jump to any cell in a range [max(0,i−d);i−1], and if the i-th character is ‘R’ then the frog can jump to any cell in a range [i+1;min(n+1;i+d)].

The frog doesn’t want to jump far, so your task is to find the minimum possible value of d such that the frog can reach the cell n+1 from the cell 0 if it can jump by no more than d cells at once. It is guaranteed that it is always possible to reach n+1 from 0.

You have to answer t independent test cases.

Input
The first line of the input contains one integer t (1≤t≤104) — the number of test cases.

The next t lines describe test cases. The i-th test case is described as a string s consisting of at least 1 and at most 2⋅105 characters ‘L’ and ‘R’.

It is guaranteed that the sum of lengths of strings over all test cases does not exceed 2⋅105 (∑|s|≤2⋅105).

Output
For each test case, print the answer — the minimum possible value of d such that the frog can reach the cell n+1 from the cell 0 if it jumps by no more than d at once.

Example
Input
6
LRLRRLL
L
LLR
RRRR
LLLLLL
R
Output
3
2
3
1
7
1
Note
The picture describing the first test case of the example and one of the possible answers:

In the second test case of the example, the frog can only jump directly from 0 to n+1.

In the third test case of the example, the frog can choose d=3, jump to the cell 3 from the cell 0 and then to the cell 4 from the cell 3.

In the fourth test case of the example, the frog can choose d=1 and jump 5 times to the right.

In the fifth test case of the example, the frog can only jump directly from 0 to n+1.

The picture describing the first test case of the example and one of the possible answers:

In the second test case of the example, the frog can only jump directly from 00 to n+1n+1.

In the third test case of the example, the frog can choose d=3d=3, jump to the cell 33 from the cell 00 and then to the cell 44 from the cell 33.

In the fourth test case of the example, the frog can choose d=1d=1 and jump 55 times to the right.

In the fifth test case of the example, the frog can only jump directly from 00 to n+1n+1.

In the sixth test case of the example, the frog can choose d=1d=1 and jump 22 times to the right.

这个题可以看作为在一个字符串中相邻的两个L之间最远的距离是多少,如果能看到这里代码也就比较好写了,但是当时没看出来

#include<iostream>
#include<cstring>
const long long maxn=2e5+;
char s[maxn];
using namespace std;
int main(){
int t,d,x;
cin>>t;
while(t--){
d=,x=; //每次操作时对这两个数进行重制
cin>>s;
int l=strlen(s);
for(int i=;i<l;i++){
if(s[i]=='R'){
x=;
}
else{
x++;
if(x>d) d=x;
}
}
cout<<d+<<endl;
}
}

div 3 frog jump的更多相关文章

  1. [LeetCode] Frog Jump 青蛙过河

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  2. Frog Jump

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  3. Leetcode: Frog Jump

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  4. [Swift]LeetCode403. 青蛙过河 | Frog Jump

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  5. [leetcode]403. Frog Jump青蛙过河

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  6. LeetCode403. Frog Jump

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  7. [LeetCode] 403. Frog Jump 青蛙跳

    A frog is crossing a river. The river is divided into x units and at each unit there may or may not ...

  8. [leetcode] 403. Frog Jump

    https://leetcode.com/contest/5/problems/frog-jump/ 这个题目,还是有套路的,之前做过一道题,好像是贪心性质,就是每次可以跳多远,最后问能不能跳到最右边 ...

  9. 403. Frog Jump

    做完了终于可以吃饭了,万岁~ 假设从stone[i]无法跳到stone[i+1]: 可能是,他们之间的距离超过了stone[i]所能跳的最远距离,0 1 3 7, 从3怎么都调不到7: 也可能是,他们 ...

随机推荐

  1. Leetcode 981. Time Based Key-Value Store(二分查找)

    题目来源:https://leetcode.com/problems/time-based-key-value-store/description/ 标记难度:Medium 提交次数:1/1 代码效率 ...

  2. Android API Levels

    Android API Levels(转) 在本文中 API的级别是什么? 在Android中使用API级别 开发者需要考虑的内容 应用程序的向前兼容性 应用程序的向后兼容性 平台版本和API级别的选 ...

  3. 从赴美IPO绝迹 看那些烧成泡沫的互联网企业

    曾经,赴美上市是很多中国企业的终极梦想.然而在当下,随着中概股在美国股市股价的不断走低.中国赴美上市企业私有化速度的加快,大众才发现,原来美国股市并不是那么好混的.但不管怎样,赴美上市始终是一种荣耀. ...

  4. CSS——NO.4(继承、层叠、特殊性、重要性)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  5. Centos 7 中 部署 asp.net core 3.0 + nginx + mongodb 的一些新手简单入门,非docker

    目录 零.准备工作 一.部署Mongodb 1.安装Mongodb 2.创建mongodb的数据目录 3.设置目录权限 4.设置mongodb启动 5.修改mongodb的配置文件 6.启动Mongo ...

  6. linux 下修改最大文件数

    环境为centosV7系列 1.查看进程的打开最大文件数,默认为1024 [root@localhost ~]# ulimit -a core file size (blocks, -c) 0 dat ...

  7. 操作系统-CPU管理的直观想法

    1. 管理CPU,先要使用CPU 管理CPU的最直观方法 2. 提出问题 有IO指令执行的特别慢,当cpu执行计算指令很快,遇到IO指令cpu进行等待,利用率不高. 使用多道程序.交替执行,这样cpu ...

  8. 「ReStory」在 Markdown 中自由书写 React 组件 (Beta)

    介绍 先睹为快 我们在开发一个小小的 React 组件库,但是我们遇到了一个大难题,那就是为我们的组件库书写一个合理的文档. 作为组件文档,我们非常希望我们的组件用例代码能够展现出来,是的我们在书写文 ...

  9. [LeetCode] 207. Course Schedule 课程表

    题目: 分析: 这是一道典型的拓扑排序问题.那么何为拓扑排序? 拓扑排序: 有三件事情A,B,C要完成,A随时可以完成,但B和C只有A完成之后才可完成,那么拓扑排序可以为A>B>C或A&g ...

  10. Kafka体系架构详细分解

    我的个人博客排版更舒服: https://www.luozhiyun.com/archives/260 基本概念 Kafka 体系架构 Kafka 体系架构包括若干 Producer.若干 Broke ...