LeetCode347:返回频率前K高的元素,基于优先队列实现
package com.lt.datastructure.MaxHeap; import java.util.LinkedList;
import java.util.List;
import java.util.TreeMap; import com.lt.datastructure.Queue.PriorityQueue;
/**
LeetCode347
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
说明:
你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。 频次: 用map 复杂度优于O(nlogn):优先队列 频次越低,优先于越高
1 TreeMap存储,键存数组的值,值存数组的值频次
2 新建Freq类,成员属性是e,freq,实现Comparable,重写CompareTo,相反地,频次小的优先级高,返回1
3 优先队列存储Freq,遍历map,如果没存满k个,继续入队,如果存满了,将队首元素和新元素的频次比较,优先级高的(频次低)出队
4 用LinkedList存储优先队列中的元素,作为结果输出
*/
public class Solution{
private class Freq implements Comparable<Freq>{
public int e,freq;
public Freq(int e, int freq) {
this.e = e;
this.freq = freq;
}
@Override
public int compareTo(Freq another) {
if(this.freq < another.freq){
return 1;
}else if(this.freq > another.freq){
return -1;
}else{
return 0;
}
} }
public List<Integer> topKFrequent(int[] nums, int k) { //映射存储元素和频次
TreeMap<Integer,Integer> map = new TreeMap<>();
for(int num : nums){
if(map.containsKey(num)){
map.put(num, map.get(num)+1);
}else{
map.put(num, 1);
}
}
//优先队列存储前k个频次最高的元素
PriorityQueue<Freq> pq = new PriorityQueue<>();
for(int key : map.keySet()){
//没存满,继续存
if(pq.getSize()<k){
pq.enqueue(new Freq(key,map.get(key)));
//存满了,比较次数,次数低的优先级高,出队,频次高的入队
}else if(map.get(key)>pq.getFront().freq){
pq.dequeue();
pq.enqueue(new Freq(key,map.get(key)));
}
}
//将优先队列的元素存于链表并作为结果输出
LinkedList<Integer> res = new LinkedList<>();
while(!pq.isEmpty()){
res.add(pq.dequeue().e);
}
return res;
}
}
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.TreeMap; public class Solution { private class Freq implements Comparable<Freq>{ //元素,频次
public int e,freq;
public Freq(int e , int freq) {
this.e = e;
this.freq = freq;
} @Override
public int compareTo(Freq another) {
if(this.freq < another.freq){
return -1;
}
else if(this.freq > another.freq){
return 1;
}else{
return 0;
}
} } public List<Integer> topKFrequent(int[] nums, int k) { Map<Integer, Integer> map = new TreeMap<>();
for (int i : nums) {
if(map.containsKey(i)){
map.put(i, map.get(i) + 1);
}else{
map.put(i, 0);
}
} //最小堆,频次最高的优先出队
PriorityQueue<Freq> queue = new PriorityQueue<>();
for(int key : map.keySet()){
if(queue.size() < k){
queue.add(new Freq(key, map.get(key)));
}
else if(map.get(key) > queue.peek().freq){
queue.remove();
queue.add(new Freq(key, map.get(key)));
}
} LinkedList<Integer> res = new LinkedList<>();
while(!queue.isEmpty()){
res.add(queue.remove().e);
}
return res;
}
}
LeetCode347:返回频率前K高的元素,基于优先队列实现的更多相关文章
- LeetCode347——优先队列解决查询前k高频率数字问题
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 例如, 给定数组 [1,1,1,2,2,3] , 和 k = 2,返回 [1,2]. 注意: 你可以假设给定的 k 总是合理的,1 ≤ k ...
- [Swift]LeetCode347. 前K个高频元素 | Top K Frequent Elements
Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...
- 前K个高频元素
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...
- Leetcode 347.前K个高频元素 By Python
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...
- 【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)
目录 描述 解法一:排序算法(不满足时间复杂度要求) Java 实现 Python 实现 复杂度分析 解法二:最小堆 思路 Java 实现 Python 实现 复杂度分析 解法三:桶排序(bucket ...
- LeetCode:前K个高频元素【347】
LeetCode:前K个高频元素[347] 题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [ ...
- 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素
1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...
- 347 Top K Frequent Elements 前K个高频元素
给定一个非空的整数数组,返回其中出现频率前 k 高的元素.例如,给定数组 [1,1,1,2,2,3] , 和 k = 2,返回 [1,2].注意: 你可以假设给定的 k 总是合理的,1 ≤ k ...
- 347. 前K个高频元素
题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = ...
随机推荐
- zigbee学习基础
应用场合:功耗(休眠)以及自组网(动态路由,梯度法寻径)是其特点.距离短.功耗低且传输速率不高的各种电子设备之间进行有周期性数据.间歇性数据和低反应时间数据传输的应用(智能家居/仓储中转/伞兵落地协同 ...
- 文件图标SVG
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...
- 十三 Struts2复杂类型的数据封装,List封装和Map封装
在实际开发当中,有可能遇到批量向数据库中插入记录,需要在页面中将数据封装到集合中.类似页面表达式方法 List封装: 前端JSP: <%@ page language="java&qu ...
- Spark教程——(11)Spark程序local模式执行、cluster模式执行以及Oozie/Hue执行的设置方式
本地执行Spark SQL程序: package com.fc //import common.util.{phoenixConnectMode, timeUtil} import org.apach ...
- 【PAT甲级】1021 Deepest Root (25 分)(暴力,DFS)
题意: 输入一个正整数N(N<=10000),然后输入N-1条边,求使得这棵树深度最大的根节点,递增序输出.如果不是一棵树,输出这张图有几个部分. trick: 时间比较充裕数据可能也不是很极限 ...
- java#临时文件目录
String tmpDir=System.getProperty("java.io.tmpdir");
- 「SCOI2005」王室联邦
「SCOI2005」王室联邦 传送门 树分块. 考虑把树,按照节点个数每 \(B\) 个分块,把块顶作为省会. 这是具体证明 参考代码: #include <cstdio> #define ...
- Java 对不同类型的数据文件的读写操作整合器[JSON,XML,CSV]-[经过设计模式改造](2020年寒假小目标03)
日期:2020.01.16 博客期:125 星期四 我想说想要构造这样一个通用文件读写器确实不容易,嗯~以后会添加更多的文件类型,先来熟悉一下文件内容样式: <?xml version=&quo ...
- Interlocked.Increment()函数详解 (转载)
原文地址 class Program { static object lockObj = new object(); ; ; //假设要处理的数据源 , ).ToList(); static void ...
- JavaScript 中 new 关键字结合构造函数创建对象
步骤: new会在内存中创建一个新的空对象 new 会让this指向这个新的对象 执行构造函数(给这个新对象添加属性和方法) new会返回这个新对象