MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数
神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数
当训练集确定之后,输入层结点数和输出层结点数随之而确定,首先遇到的一个十分重要而又困难的问题是如何优化隐层结点数和隐层数。实验表明,如果隐层结点数过少,网络不能具有必要的学习能力和信息处理能力。反之,若过多,不仅会大大增加网络结构的复杂性(这一点对硬件实现的网络尤其重要),网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度变得很慢。隐层结点数的选择问题一直受到神经网络研究工作者的高度重视。
方法1:
fangfaGorman指出隐层结点数s与模式数N的关系是:s=log2N;
方法二:
Kolmogorov定理表明,隐层结点数s=2n+1(n为输入层结点数);
方法三:
s=sqrt(0.43mn+0.12nn+2.54m+0.77n+0.35)+0.51
(m是输入层的个数,n是输出层的个数)。
MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数的更多相关文章
- 人工神经网络,支持任意数量隐藏层,多层隐藏层,python代码分享
http://www.cnblogs.com/bambipai/p/7922981.html------误差逆传播算法讲解 人工神经网络包含多种不同的神经网络,此处的代码建立的是多层感知器网络,代码以 ...
- 理解dropout——本质是通过阻止特征检测器的共同作用来防止过拟合 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/torna ...
- 神经网络结构设计指导原则——输入层:神经元个数=feature维度 输出层:神经元个数=分类类别数,默认只用一个隐层 如果用多个隐层,则每个隐层的神经元数目都一样
神经网络结构设计指导原则 原文 http://blog.csdn.net/ybdesire/article/details/52821185 下面这个神经网络结构设计指导原则是Andrew N ...
- C++卷积神经网络实例:tiny_cnn代码具体解释(6)——average_pooling_layer层结构类分析
在之前的博文中我们着重分析了convolutional_layer类的代码结构.在这篇博文中分析相应的下採样层average_pooling_layer类: 一.下採样层的作用 下採样层的作用理论上来 ...
- Cocos2dx 3.2 节点之间相互通信与设置触摸吞噬的方法
实际开发中,我们经常会遇到这样的情况.我们有一个层layer1,这个层包含一个menu层,menu1层里又包含了一个节点按钮button1.现在需要实现一个效果:点击button1弹出一个对话框,这个 ...
- 二叉树(8)----第一个二叉树K层节点和二进制部分K叶节点层,递归和非递归
1.二进制定义 typedef struct BTreeNodeElement_t_ { void *data; } BTreeNodeElement_t; typedef struct BTreeN ...
- Neural Networks and Deep Learning(week3)Planar data classification with one hidden layer(基于单隐藏层神经网络的平面数据分类)
Planar data classification with one hidden layer 你会学习到如何: 用单隐层实现一个二分类神经网络 使用一个非线性激励函数,如 tanh 计算交叉熵的损 ...
- tensorflow-LSTM-网络输出与多隐层节点
本文从tensorflow的代码层面理解LSTM. 看本文之前,需要先看我的这两篇博客 https://www.cnblogs.com/yanshw/p/10495745.html 谈到网络结构 ht ...
- C++卷积神经网络实例:tiny_cnn代码具体解释(7)——fully_connected_layer层结构类分析
之前的博文中已经将卷积层.下採样层进行了分析.在这篇博文中我们对最后一个顶层层结构fully_connected_layer类(全连接层)进行分析: 一.卷积神经网路中的全连接层 在卷积神经网络中全连 ...
随机推荐
- CSS - flex 垂直水平居中
display: flex; justify-content: center; /* 水平居中 */ align-items: center; /* 垂直居中 */
- 类的始祖Object
一.概述 Object时java中顶级父类,也是唯一没有父类的类:它是整个java中最基本的类,在java中所有的类都默认继承了Object. 二.重要方法 1.clone方法 克隆出一个新的对象. ...
- (排序EX)P1583 魔法照片
题解: 需要注意的是,快排完之后并不是按照编号从小到大的顺序输出 #include<iostream>using namespace std;int r=0;void swap(int & ...
- 【redis】redis底层数据结构原理--简单动态字符串 链表 字典 跳跃表 整数集合 压缩列表等
redis有五种数据类型string.list.hash.set.zset(字符串.哈希.列表.集合.有序集合)并且自实现了简单动态字符串.双端链表.字典.压缩列表.整数集合.跳跃表等数据结构.red ...
- EUI库 - 9 - 数据集合 - 数据容器
DataGroup 设置一个数据源 自动创建内部所需的对象 来完成数据展示 还要设置单条数据的模板 叫ItemRenderer 继承关系 eui.List eui.ListBase e ...
- 洛谷 P2458 [SDOI2006]保安站岗
题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...
- node.js爱心邮件
一.用的软件是VsCode:下载地址:https://code.visualstudio.com/ 二.用的是node.js完成:下载地址:http://nodejs.cn/download/ 无脑下 ...
- gdal库的学习和使用
1.windows下的编译 1.1.解压后打开nmake.opt,设置GDAL_HOME 1.2.进入vs的command promot,进入正常的那个即可,64位的没试过,可以参考gdal官网 1. ...
- GitHub 网站上不去/加载慢/加载不全 解决办法
1. 当你打开你的 GitHub 2. F12 进入检查页面,点击 network 3. 找到变红的字段右键复制连接 4. 打开 DNS 查询网站,输入你复制的网址,点击查询 5. 选择国内的 ip ...
- 使用ansible tasks生成linux巡检报告
一直想做个关于资源巡检的功能,其需求就是通过邮件的形式来查看linux资源的使用情况,超出一定的阈值时高亮显示出来.也有人说啦,这个需求通过监控zabbix, prometheus都能做呀,何必自己重 ...