一眼看上去就应该能用半平面交去做。

首先考虑怎么求可能得第1名的人:每个人的函数为直线,就是在所有人的半平面交中的上边界者即可获得第一名,这个可以单调队列求解。

再考虑如何求可能得第2名的人:满足2个条件:1、在去掉可能得第1名的人后可以拿第1,这个跳转到上面的过程;2、至多同时被1个能拿第一名的人超越,这个应该在半平面上做一个区间覆盖,可以线段树或者二分求解,我懒得不会写线段树就只写了二分。

第3~m名,可以仿照第2名的过程,做m次半平面交,其实会m=2就是会正解了。

时间复杂度O(nmlogn)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,int>pii;
const int N=1e5+;
struct node{
ll a,b,c;
node(){a=b=,c=;}
node(ll x,ll y){if(y<)x=-x,y=-y;a=x/y;b=x%y;c=y;if(b<)b+=c,a--;}
ll ceil(){return a+(b>);}
bool operator<(const node&t)const{return a==t.a?b*t.c<t.b*c:a<t.a;}
bool operator<=(const node&t)const{return a==t.a?b*t.c<=t.b*c:a<t.a;}
}p[N];
int n,m,top,tot,id[N],ans[N],st[N];
ll a[N],b[N];
pii s[N<<];
bool cmp(int x,int y){return a[x]<a[y]||a[x]==a[y]&&b[x]>b[y];}
node cross(int x,int y){return node(b[y]-b[x],a[x]-a[y]);}
void solve(int k)
{
top=tot=;
p[]=node(,);
for(int i=;i<=n;i++)
if(ans[id[i]]==-&&a[id[i]]>a[st[top]])
{
while(top&&cross(id[i],st[top]).a<p[top].ceil())top--;
st[++top]=id[i];
if(top>)p[top]=cross(st[top-],id[i]);
}
p[top+]=node(1ll<<,);
for(int i=;i<=n;i++)
if(ans[i]>)
{
int l=,r=top-,mid,pos=top;
while(l<=r)
{
mid=l+r>>;
if(a[st[mid]]>=a[i]||cross(st[mid],i)<=p[mid+])pos=mid,r=mid-;
else l=mid+;
}
s[++tot]=pii(a[st[pos]]>=a[i]?:cross(st[pos],i).a+,);
l=,r=top,pos=;
while(l<=r)
{
mid=l+r>>;
if(a[st[mid]]<=a[i]||p[mid]<=cross(st[mid],i))pos=mid,l=mid+;
else r=mid-;
}
if(a[st[pos]]>a[i])s[++tot]=pii(cross(st[pos],i).ceil(),-);
}
sort(s+,s+tot+);
for(int i=,j=,sum=;i<=top;i++)
{
while(j<=tot&&s[j].first<=p[i].ceil())sum+=s[j++].second;
if(sum<k)ans[st[i]]=k;
while(j<=tot&&s[j].first<=p[i+].a)
{
int p=j;
while(p<=tot&&s[p].first==s[j].first)sum+=s[p++].second;
if(sum<k)ans[st[i]]=k;
j=p;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lld%lld",&a[i],&b[i]),id[i]=i,ans[i]=-;
sort(id+,id+n+,cmp);
for(int i=;i<=m;i++)solve(i);
for(int i=;i<=n;i++)printf("%d ",ans[i]);
}

[ZJOI2019]浙江省选(半平面交)的更多相关文章

  1. 【题解】Luogu P5328 [ZJOI2019]浙江省选

    原题传送门 看起来挺妙实际很暴力的一题 已知每个选手的分数都是平面上的直线 题目实际就是让我们求每条直线在整点处最大是第几大 我们考虑先对所有的直线进行半平面交(因为\(a_i\)都是正整数,所以比普 ...

  2. luogu P5328 [ZJOI2019]浙江省选

    传送门 每个人都可以看成一条直线\(y=ax+b\),所以我们要求的是每条线在整点处,上方线的数量的最小值(注意多条直线如果交于同一整点互不影响) 如果\(m=1\),其实只要求出半平面交,然后在半平 ...

  3. 【LuoguP5328】[ZJOI2019]浙江省选

    题目链接 题意 给你一堆斜率和纵截距都为正的直线 ,求对于一个条直线是否存在一个 x 使得在这条直线在 x 处能是前 m 大,输出最高能够达到的排名(排名定义为在 x 处严格大于自己的直线条数+1) ...

  4. UVALive 4992 Jungle Outpost(半平面交)

    题意:给你n个塔(点)形成一个顺时针的凸包,敌人可以摧毁任何塔,摧毁后剩下的塔再组成凸包 在开始的凸包内选一点为主塔,保证敌人摧毁尽量多塔时主塔都还在现在的凸包内,求出最多摧毁的塔 题解:这题关键就是 ...

  5. 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)

    传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...

  6. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  7. 【BZOJ-2618】凸多边形 计算几何 + 半平面交 + 增量法 + 三角剖分

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 959  Solved: 489[Submit][Status] ...

  8. 【CSU1812】三角形和矩形 【半平面交】

    检验半平面交的板子. #include <stdio.h> #include <bits/stdc++.h> using namespace std; #define gg p ...

  9. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

随机推荐

  1. 2019 年 Google 编程之夏活动报告

    2019 年 Google 编程之夏活动报告 主要介绍了 GSoC 2019 活动的几个课题并讲述了整个活动的组织过程 Google 编程之夏活动不仅仅是一个夏日的实习项目,对于组织和一些社区的成员来 ...

  2. SQL审核平台-Yearning安装部署实践

    相关文档: https://guide.yearning.io/ yearning简介 http://python.yearning.io/install/  yearning安装 Yearning ...

  3. SQL笔记整理

  4. go简单文件服务器

    go文件服务器 go语言实现的简单文件服务器 github

  5. 查看电脑连接的WiFi的密码

    这里提供两种办法:图形界面操作版.命令行操作版 方法一: 打开控制面板 点击红色框部分 方法二 打开命令行:输入命令netsh wlan show profiles "连接的WiFi的名称& ...

  6. IP欺骗(XFF头等)

    很多时候需要伪造一些http头来绕过WAF 1.X-Forwarded-For: 简称XFF头,它代表客户端,也就是HTTP的请求端真实的IP,只有在通过了HTTP 代理或者负载均衡服务器时才会添加该 ...

  7. hibernate结果集多种映射方案

    String sql = "select marker_no AS markerNo,name from lv_marker"; String sqlMo = "sele ...

  8. 模拟jenkins通过shell给ansible传入变量

    jenkins.sh #!/bin/bash name1='robin h h li' age1='11' declare -A dic dic=( [name1]="${name1}&qu ...

  9. 神经网络 参数计算--直接解析CKPT文件读取

    1.tensorflow的模型文件ckpt参数获取 import tensoflow as tf from tensorflow.python import pywrap_tensorflow mod ...

  10. Java数据的存储

    在JAVA中,有六个不同的地方可以存储数据: 1. 寄存器(register).这是最快的存储区,因为它位于不同于其他存储区的地方——处理器内部.但是寄存器的数量极其有限,所以寄存器由编译器根据需求进 ...