开始 Keras 序列模型(Sequential model)
开始 Keras 序列模型(Sequential model)
序列模型是一个线性的层次堆栈。
你可以通过传递一系列 layer 实例给构造器来创建一个序列模型。
The Sequential model is a linear stack of layers.
You can create a Sequential model by passing a list of layer instances to the constructor:
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential([
Dense(32, input_shape=(784,)),
Activation('relu'),
Dense(10),
Activation('softmax'),
])
也可以简单的添加 layer 通过 .add() 函数。
You can also simply add layers via the .add() method:
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
Specifying the input shape
The model needs to know what input shape it should expect. For this reason, the first layer in a Sequential model (and only the first, because following layers can do automatic shape inference) needs to receive information about its input shape. There are several possible ways to do this:
- Pass an
input_shapeargument to the first layer. This is a shape tuple (a tuple of integers orNoneentries, whereNoneindicates that any positive integer may be expected). Ininput_shape, the batch dimension is not included. - Some 2D layers, such as
Dense, support the specification of their input shape via the argumentinput_dim, and some 3D temporal layers support the argumentsinput_dimandinput_length. - If you ever need to specify a fixed batch size for your inputs (this is useful for stateful recurrent networks), you can pass a
batch_sizeargument to a layer. If you pass bothbatch_size=32andinput_shape=(6, 8)to a layer, it will then expect every batch of inputs to have the batch shape(32, 6, 8).
As such, the following snippets are strictly equivalent:
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model = Sequential()
model.add(Dense(32, input_dim=784))
Compilation
Before training a model, you need to configure the learning process, which is done via the compile method. It receives three arguments:
- An optimizer. This could be the string identifier of an existing optimizer (such as
rmsproporadagrad), or an instance of theOptimizerclass. See: optimizers. - A loss function. This is the objective that the model will try to minimize. It can be the string identifier of an existing loss function (such as
categorical_crossentropyormse), or it can be an objective function. See: losses. - A list of metrics. For any classification problem you will want to set this to
metrics=['accuracy']. A metric could be the string identifier of an existing metric or a custom metric function.
# For a multi-class classification problem
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# For a binary classification problem
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# For a mean squared error regression problem
model.compile(optimizer='rmsprop',
loss='mse')
# For custom metrics
import keras.backend as K
def mean_pred(y_true, y_pred):
return K.mean(y_pred)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])
Training
Keras models are trained on Numpy arrays of input data and labels. For training a model, you will typically use the fit function. Read its documentation here.
# For a single-input model with 2 classes (binary classification):
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)
# For a single-input model with 10 classes (categorical classification):
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1))
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, one_hot_labels, epochs=10, batch_size=32)
Examples
Here are a few examples to get you started!
In the examples folder, you will also find example models for real datasets:
- CIFAR10 small images classification: Convolutional Neural Network (CNN) with realtime data augmentation
- IMDB movie review sentiment classification: LSTM over sequences of words
- Reuters newswires topic classification: Multilayer Perceptron (MLP)
- MNIST handwritten digits classification: MLP & CNN
- Character-level text generation with LSTM
…and more.
Multilayer Perceptron (MLP) for multi-class softmax classification:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
MLP for binary classification:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
# Generate dummy data
x_train = np.random.random((1000, 20))
y_train = np.random.randint(2, size=(1000, 1))
x_test = np.random.random((100, 20))
y_test = np.random.randint(2, size=(100, 1))
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
VGG-like convnet:
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
# Generate dummy data
x_train = np.random.random((100, 100, 100, 3))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
x_test = np.random.random((20, 100, 100, 3))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)
model = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)
Sequence classification with LSTM:
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM
model = Sequential()
model.add(Embedding(max_features, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)
Sequence classification with 1D convolutions:
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D
model = Sequential()
model.add(Conv1D(64, 3, activation='relu', input_shape=(seq_length, 100)))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 3, activation='relu'))
model.add(Conv1D(128, 3, activation='relu'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)
Stacked LSTM for sequence classification
In this model, we stack 3 LSTM layers on top of each other,
making the model capable of learning higher-level temporal representations.
The first two LSTMs return their full output sequences, but the last one only returns
the last step in its output sequence, thus dropping the temporal dimension
(i.e. converting the input sequence into a single vector).

from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
data_dim = 16
timesteps = 8
num_classes = 10
# expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()
model.add(LSTM(32, return_sequences=True,
input_shape=(timesteps, data_dim))) # returns a sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True)) # returns a sequence of vectors of dimension 32
model.add(LSTM(32)) # return a single vector of dimension 32
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# Generate dummy training data
x_train = np.random.random((1000, timesteps, data_dim))
y_train = np.random.random((1000, num_classes))
# Generate dummy validation data
x_val = np.random.random((100, timesteps, data_dim))
y_val = np.random.random((100, num_classes))
model.fit(x_train, y_train,
batch_size=64, epochs=5,
validation_data=(x_val, y_val))
Same stacked LSTM model, rendered “stateful”
A stateful recurrent model is one for which the internal states (memories) obtained after processing a batch
of samples are reused as initial states for the samples of the next batch. This allows to process longer sequences
while keeping computational complexity manageable.
You can read more about stateful RNNs in the FAQ.
from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
data_dim = 16
timesteps = 8
num_classes = 10
batch_size = 32
# Expected input batch shape: (batch_size, timesteps, data_dim)
# Note that we have to provide the full batch_input_shape since the network is stateful.
# the sample of index i in batch k is the follow-up for the sample i in batch k-1.
model = Sequential()
model.add(LSTM(32, return_sequences=True, stateful=True,
batch_input_shape=(batch_size, timesteps, data_dim)))
model.add(LSTM(32, return_sequences=True, stateful=True))
model.add(LSTM(32, stateful=True))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# Generate dummy training data
x_train = np.random.random((batch_size * 10, timesteps, data_dim))
y_train = np.random.random((batch_size * 10, num_classes))
# Generate dummy validation data
x_val = np.random.random((batch_size * 3, timesteps, data_dim))
y_val = np.random.random((batch_size * 3, num_classes))
model.fit(x_train, y_train,
batch_size=batch_size, epochs=5, shuffle=False,
validation_data=(x_val, y_val))
开始 Keras 序列模型(Sequential model)的更多相关文章
- Keras序列模型学习
转自:https://keras.io/zh/getting-started/sequential-model-guide/ 1.顺序模型是多个网络层的线性堆叠. 你可以通过将网络层实例的列表传递给 ...
- 【Keras学习】Sequential模型
序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...
- Keras 时序模型
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Thinking_boy1992/article/details/53207177 本文翻译自 时序模 ...
- keras 保存模型
转自:https://blog.csdn.net/u010159842/article/details/54407745,感谢分享! 我们不推荐使用pickle或cPickle来保存Keras模型 你 ...
- keras 入门模型训练
# -*- coding: utf-8 -*- from keras.models import Sequential from keras.layers import Dense from kera ...
- Keras保存模型并载入模型继续训练
我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_util ...
- keras模块学习之model层【重点学习】
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! model层是keras模块最重要的一个层,所以单独做下笔记,这块比较难理解,本博主自己还在学习这块,还在迷糊中. model的方法 ...
- keras 保存模型和加载模型
import numpy as npnp.random.seed(1337) # for reproducibility from keras.models import Sequentialfrom ...
- Deep Learning.ai学习笔记_第五门课_序列模型
目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出 ...
随机推荐
- 笔记: SpringBoot + VUE实现数据字典展示功能
最近一直在写前端,写得我贼难受,从能看懂一些基础的代码到整个前端框架撸下来鬼知道我经历了啥(:´д`)ゞ 项目中所用到的下拉菜单的值全部都是有数据库中的数据字典表来提供的,显示给用户的是的清晰的意思, ...
- Oracle密码验证函数与Create Profile
今天看到了一个oracle密码函数的东西,就在网上找文档自己做测试,刚开始看不懂,最后做完记录一下 密码函数的作用就是要将用户密码进行限制,比如申请一个网站的账号的时候,密码会要求你不少于8位,必须要 ...
- python django 之 django自定制分页
自定制的分页模块 #!/usr/bin/env python3 # V1.1 解决问题: # 1). p 参数 为 负数 与 p 参数查过总页数时报错的问题 # V1.2 解决的问题: # 1). 点 ...
- 提高开发效率之VS Code基础配置篇
背景 之前一直是只用WebStorm作为IDE来编写代码,但是由于: 手中的这台Mac接了两个显示器以后,使用WebStorm会有卡顿. WebStorm需要付费(虽然可以通过某方法和谐). 所以需要 ...
- clientWidth offsetWidth等视窗尺寸
clientWidth和offsetWidth clientWidth 是一个只读属性,返回元素的内部宽度,该属性包括内边距,但不包括垂直滚动条(如果有).边框和外边距. offsetWidth 是一 ...
- C++读入输出优化
读入输出优化虽然对于小数据没有半点作用,但是对于大数据来说,可以优化几十ms. 有时就是那么几十ms,可以被卡掉大数据的点 读入优化 int read() { int x=0,sig=1; char ...
- java多线程基础API
本次内容主要讲认识Java中的多线程.线程的启动与中止.yield()和join.线程优先级和守护线程. 1.Java程序天生就是多线程的 一个Java程序从main()方法开始执行,然后按照既定的代 ...
- DEX文件解析---2、Dex文件checksum(校验和)解析
一.checksum介绍 checksum(校验和)是DEX位于文件头部的一个信息,用来判断DEX文件是否损坏或者被篡改,它位于头部的0x08偏移地址处,占用4个字节,采用小端序存储. ...
- 基于springcloud框架搭建项目-Eureka篇(一)
springcloud项目近年来算是很流行的了,不少公司项目目前都用到了,毕竟优点很多,刚好公司项目用到了,根据自己的理解,简单搭建一下,以便以后学习 这里简单的介绍一下它: SpringCloud, ...
- scrapy-redis分布式爬取知乎问答,使用docker布置多台机器。
先上结果: 问题: 答案: 可以看到现在答案文档有十万多,十万个为什么~hh 正文开始: 分布式爬虫应该是在多台服务器(A B C服务器)布置爬虫环境,让它们重复交叉爬取,这样的话需要用到状态管理器. ...