开始 Keras 序列模型(Sequential model)

序列模型是一个线性的层次堆栈。

你可以通过传递一系列 layer 实例给构造器来创建一个序列模型。

The Sequential model is a linear stack of layers.

You can create a Sequential model by passing a list of layer instances to the constructor:

from keras.models import Sequential
from keras.layers import Dense, Activation model = Sequential([
Dense(32, input_shape=(784,)),
Activation('relu'),
Dense(10),
Activation('softmax'),
])

也可以简单的添加 layer 通过 .add() 函数。

You can also simply add layers via the .add() method:

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))

Specifying the input shape

The model needs to know what input shape it should expect. For this reason, the first layer in a Sequential model (and only the first, because following layers can do automatic shape inference) needs to receive information about its input shape. There are several possible ways to do this:

  • Pass an input_shape argument to the first layer. This is a shape tuple (a tuple of integers or None entries, where None indicates that any positive integer may be expected). In input_shape, the batch dimension is not included.
  • Some 2D layers, such as Dense, support the specification of their input shape via the argument input_dim, and some 3D temporal layers support the arguments input_dim and input_length.
  • If you ever need to specify a fixed batch size for your inputs (this is useful for stateful recurrent networks), you can pass a batch_size argument to a layer. If you pass both batch_size=32 and input_shape=(6, 8) to a layer, it will then expect every batch of inputs to have the batch shape (32, 6, 8).

As such, the following snippets are strictly equivalent:

model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model = Sequential()
model.add(Dense(32, input_dim=784))

Compilation

Before training a model, you need to configure the learning process, which is done via the compile method. It receives three arguments:

  • An optimizer. This could be the string identifier of an existing optimizer (such as rmsprop or adagrad), or an instance of the Optimizer class. See: optimizers.
  • A loss function. This is the objective that the model will try to minimize. It can be the string identifier of an existing loss function (such as categorical_crossentropy or mse), or it can be an objective function. See: losses.
  • A list of metrics. For any classification problem you will want to set this to metrics=['accuracy']. A metric could be the string identifier of an existing metric or a custom metric function.
# For a multi-class classification problem
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy']) # For a binary classification problem
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy']) # For a mean squared error regression problem
model.compile(optimizer='rmsprop',
loss='mse') # For custom metrics
import keras.backend as K def mean_pred(y_true, y_pred):
return K.mean(y_pred) model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])

Training

Keras models are trained on Numpy arrays of input data and labels. For training a model, you will typically use the fit function. Read its documentation here.

# For a single-input model with 2 classes (binary classification):

model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy']) # Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1)) # Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)
# For a single-input model with 10 classes (categorical classification):

model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy']) # Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1)) # Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) # Train the model, iterating on the data in batches of 32 samples
model.fit(data, one_hot_labels, epochs=10, batch_size=32)

Examples

Here are a few examples to get you started!

In the examples folder, you will also find example models for real datasets:

  • CIFAR10 small images classification: Convolutional Neural Network (CNN) with realtime data augmentation
  • IMDB movie review sentiment classification: LSTM over sequences of words
  • Reuters newswires topic classification: Multilayer Perceptron (MLP)
  • MNIST handwritten digits classification: MLP & CNN
  • Character-level text generation with LSTM

…and more.

Multilayer Perceptron (MLP) for multi-class softmax classification:

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD # Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy']) model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

MLP for binary classification:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout # Generate dummy data
x_train = np.random.random((1000, 20))
y_train = np.random.randint(2, size=(1000, 1))
x_test = np.random.random((100, 20))
y_test = np.random.randint(2, size=(100, 1)) model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

VGG-like convnet:

import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD # Generate dummy data
x_train = np.random.random((100, 100, 100, 3))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
x_test = np.random.random((20, 100, 100, 3))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10) model = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd) model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)

Sequence classification with LSTM:

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM model = Sequential()
model.add(Embedding(max_features, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)

Sequence classification with 1D convolutions:

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D model = Sequential()
model.add(Conv1D(64, 3, activation='relu', input_shape=(seq_length, 100)))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 3, activation='relu'))
model.add(Conv1D(128, 3, activation='relu'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)

Stacked LSTM for sequence classification

In this model, we stack 3 LSTM layers on top of each other,

making the model capable of learning higher-level temporal representations.

The first two LSTMs return their full output sequences, but the last one only returns

the last step in its output sequence, thus dropping the temporal dimension

(i.e. converting the input sequence into a single vector).

from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np data_dim = 16
timesteps = 8
num_classes = 10 # expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()
model.add(LSTM(32, return_sequences=True,
input_shape=(timesteps, data_dim))) # returns a sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True)) # returns a sequence of vectors of dimension 32
model.add(LSTM(32)) # return a single vector of dimension 32
model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) # Generate dummy training data
x_train = np.random.random((1000, timesteps, data_dim))
y_train = np.random.random((1000, num_classes)) # Generate dummy validation data
x_val = np.random.random((100, timesteps, data_dim))
y_val = np.random.random((100, num_classes)) model.fit(x_train, y_train,
batch_size=64, epochs=5,
validation_data=(x_val, y_val))

Same stacked LSTM model, rendered “stateful”

A stateful recurrent model is one for which the internal states (memories) obtained after processing a batch

of samples are reused as initial states for the samples of the next batch. This allows to process longer sequences

while keeping computational complexity manageable.

You can read more about stateful RNNs in the FAQ.

from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np data_dim = 16
timesteps = 8
num_classes = 10
batch_size = 32 # Expected input batch shape: (batch_size, timesteps, data_dim)
# Note that we have to provide the full batch_input_shape since the network is stateful.
# the sample of index i in batch k is the follow-up for the sample i in batch k-1.
model = Sequential()
model.add(LSTM(32, return_sequences=True, stateful=True,
batch_input_shape=(batch_size, timesteps, data_dim)))
model.add(LSTM(32, return_sequences=True, stateful=True))
model.add(LSTM(32, stateful=True))
model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) # Generate dummy training data
x_train = np.random.random((batch_size * 10, timesteps, data_dim))
y_train = np.random.random((batch_size * 10, num_classes)) # Generate dummy validation data
x_val = np.random.random((batch_size * 3, timesteps, data_dim))
y_val = np.random.random((batch_size * 3, num_classes)) model.fit(x_train, y_train,
batch_size=batch_size, epochs=5, shuffle=False,
validation_data=(x_val, y_val))

开始 Keras 序列模型(Sequential model)的更多相关文章

  1. Keras序列模型学习

    转自:https://keras.io/zh/getting-started/sequential-model-guide/ 1.顺序模型是多个网络层的线性堆叠. 你可以通过将网络层实例的列表传递给  ...

  2. 【Keras学习】Sequential模型

    序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...

  3. Keras 时序模型

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Thinking_boy1992/article/details/53207177 本文翻译自 时序模 ...

  4. keras 保存模型

    转自:https://blog.csdn.net/u010159842/article/details/54407745,感谢分享! 我们不推荐使用pickle或cPickle来保存Keras模型 你 ...

  5. keras 入门模型训练

    # -*- coding: utf-8 -*- from keras.models import Sequential from keras.layers import Dense from kera ...

  6. Keras保存模型并载入模型继续训练

    我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_util ...

  7. keras模块学习之model层【重点学习】

    本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! model层是keras模块最重要的一个层,所以单独做下笔记,这块比较难理解,本博主自己还在学习这块,还在迷糊中. model的方法 ...

  8. keras 保存模型和加载模型

    import numpy as npnp.random.seed(1337) # for reproducibility from keras.models import Sequentialfrom ...

  9. Deep Learning.ai学习笔记_第五门课_序列模型

    目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出 ...

随机推荐

  1. VR、网剧如何成为民间骗子中的朝阳产业

    ​ 互联网的发达,让大众有了了解世界最好的传播工具.但与此同时,大量信息潮的涌来,让人们难以分辨其中的真假.于是,原本靠大力丸.保健药.假公章等行骗的骗子们开始转变方向,利用信息不对称性,大肆捏造与热 ...

  2. PyQt5之音乐播放器

    按照自己思路简单写了个桌面播放器,只有自己喜欢的歌.使用QtDesigner设计的ui界面,功能简单,还有很多bug@~@,代码奉上: music_button.ui使用扩展工具pyuic5生成了mu ...

  3. 挖SRC逻辑漏洞心得分享

    文章来源i春秋 白帽子挖洞的道路还漫长的很,老司机岂非一日一年能炼成的. 本文多处引用了 YSRC 的 公(qi)开(yin)漏(ji)洞(qiao).挖SRC思路一定要广!!!!漏洞不会仅限于SQL ...

  4. 【转】css样式自动换行(强制换行)

    原文链接:http://blog.csdn.net/ye987987... 自动换行问题,正常字符的换行是比较合理的,而连续的数字和英文字符常常将容器撑大,挺让人头疼,下面介绍的是CSS如何实现换行的 ...

  5. 37个JavaScript基本面试问题和解答

    1.使用typeof bar ==="object"来确定bar是否是一个对象时有什么潜在的缺陷?这个陷阱如何避免? 尽管typeof bar ==="object&qu ...

  6. 2020年,如何成为一名 iOS 开发高手!

    2020年对应程序员来说,是一个多灾的年份,很多公司都进行了不同比例的优化和裁员.等疫情得到控制后,将会是找工作的高峰期,从去年的面试经历来看,现在只会单纯写业务代码的人找工作特别难,很多大厂的面试官 ...

  7. 『配置』服务器搭建 Office Online Server2016 实现文档预览

    博主有话说:这个过程我遇到了很多错误,所以出了一个错误整理文章,所以当你在配置过程中遇到了问题,可以先去这篇文章里找找!加油! 先打开我吧:https://www.cnblogs.com/pukua/ ...

  8. 01 极简Linux操作系统发展历史

    Unix操作系统的诞生 1965 年之前的时候,电脑并不像现在一样普遍,它可不是一般人能碰的起的,除非是军事或者学院的研究机构,而且当时大型主机至多能提供30台终端(30个键盘.显示器),连接一台电脑 ...

  9. Excel之在单元格中生成随机密码

    公式 =CHAR(INT(RAND()*26+97))&INT(RAND()*10)&CHAR(INT(RAND()*26+97))&INT(RAND()*10) 分析 CHA ...

  10. 《前端之路》 - 初试 TypeScript(一)基础数据类型

    一.先讲讲 TypeScript 什么是 typeScript ? typeScript 是 Javascript 的超集 我们用一张图来简单介绍下 ts 和 js 清清楚楚明明白白的关系- 为什么会 ...