mapreduce 实现矩阵乘法
import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MatrixMultiply {
/** mapper和reducer需要的三个必要变量,由conf.get()方法得到 **/
public static int rowM = 0;
public static int columnM = 0;
public static int columnN = 0; public static class MatrixMapper extends Mapper<Object, Text, Text, Text> {
private Text map_key = new Text();
private Text map_value = new Text(); /**
* 执行map()函数前先由conf.get()得到main函数中提供的必要变量, 这也是MapReduce中共享变量的一种方式
*/
public void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
columnN = Integer.parseInt(conf.get("columnN"));
rowM = Integer.parseInt(conf.get("rowM"));
} public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
/** 得到输入文件名,从而区分输入矩阵M和N **/
FileSplit fileSplit = (FileSplit) context.getInputSplit();
String fileName = fileSplit.getPath().getName(); if (fileName.contains("M")) {
String[] tuple = value.toString().split(",");
int i = Integer.parseInt(tuple[0]);
String[] tuples = tuple[1].split("\t");
int j = Integer.parseInt(tuples[0]);
int Mij = Integer.parseInt(tuples[1]); for (int k = 1; k < columnN + 1; k++) {
map_key.set(i + "," + k);
map_value.set("M" + "," + j + "," + Mij);
context.write(map_key, map_value);
}
} else if (fileName.contains("N")) {
String[] tuple = value.toString().split(",");
int j = Integer.parseInt(tuple[0]);
String[] tuples = tuple[1].split("\t");
int k = Integer.parseInt(tuples[0]);
int Njk = Integer.parseInt(tuples[1]); for (int i = 1; i < rowM + 1; i++) {
map_key.set(i + "," + k);
map_value.set("N" + "," + j + "," + Njk);
context.write(map_key, map_value);
}
}
}
} public static class MatrixReducer extends Reducer<Text, Text, Text, Text> {
private int sum = 0; public void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
columnM = Integer.parseInt(conf.get("columnM"));
} public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
int[] M = new int[columnM + 1];
int[] N = new int[columnM + 1]; for (Text val : values) {
String[] tuple = val.toString().split(",");
if (tuple[0].equals("M")) {
M[Integer.parseInt(tuple[1])] = Integer.parseInt(tuple[2]);
} else
N[Integer.parseInt(tuple[1])] = Integer.parseInt(tuple[2]);
} /** 根据j值,对M[j]和N[j]进行相乘累加得到乘积矩阵的数据 **/
for (int j = 1; j < columnM + 1; j++) {
sum += M[j] * N[j];
}
context.write(key, new Text(Integer.toString(sum)));
sum = 0;
}
} /**
* main函数
* <p>
* Usage:
*
* <p>
* <code>MatrixMultiply inputPathM inputPathN outputPath</code>
*
* <p>
* 从输入文件名称中得到矩阵M的行数和列数,以及矩阵N的列数,作为重要参数传递给mapper和reducer
*
* @param args 输入文件目录地址M和N以及输出目录地址
*
* @throws Exception
*/ public static void main(String[] args) throws Exception { if (args.length != 3) {
System.err
.println("Usage: MatrixMultiply <inputPathM> <inputPathN> <outputPath>");
System.exit(2);
} else {
String[] infoTupleM = args[0].split("_");
rowM = Integer.parseInt(infoTupleM[1]);
columnM = Integer.parseInt(infoTupleM[2]);
String[] infoTupleN = args[1].split("_");
columnN = Integer.parseInt(infoTupleN[2]);
} Configuration conf = new Configuration();
/** 设置三个全局共享变量 **/
conf.setInt("rowM", rowM);
conf.setInt("columnM", columnM);
conf.setInt("columnN", columnN); Job job = new Job(conf, "MatrixMultiply");
job.setJarByClass(MatrixMultiply.class);
job.setMapperClass(MatrixMapper.class);
job.setReducerClass(MatrixReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path(args[0]), new Path(args[1]));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}


mapreduce 实现矩阵乘法的更多相关文章
- 【甘道夫】MapReduce实现矩阵乘法--实现代码
之前写了一篇分析MapReduce实现矩阵乘法算法的文章: [甘道夫]Mapreduce实现矩阵乘法的算法思路 为了让大家更直观的了解程序运行,今天编写了实现代码供大家參考. 编程环境: java v ...
- MapReduce实现矩阵乘法
简单回想一下矩阵乘法: 矩阵乘法要求左矩阵的列数与右矩阵的行数相等.m×n的矩阵A,与n×p的矩阵B相乘,结果为m×p的矩阵C.具体内容能够查看:矩阵乘法. 为了方便描写叙述,先进行如果: 矩阵A的行 ...
- 基于MapReduce的矩阵乘法
参考:http://blog.csdn.net/xyilu/article/details/9066973文章 文字未得及得总结,明天再写文字,先贴代码 package matrix; import ...
- Python+MapReduce实现矩阵相乘
算法原理 map阶段 在map阶段,需要做的是进行数据准备.把来自矩阵A的元素aij,标识成p条<key, value>的形式,key="i,k",(其中k=1,2,. ...
- 矩阵乘法的MapReduce实现
对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...
- MapReduce实现大矩阵乘法
来自:http://blog.csdn.net/xyilu/article/details/9066973 引言 何 为大矩阵?Excel.SPSS,甚至SAS处理不了或者处理起来非常困难,需要设计巧 ...
- MapReduce的矩阵相乘
一.单个mapreduce的实现 转自:http://blog.sina.com.cn/s/blog_62186b460101ai1x.html 王斌_ICTIR老师的<大数据:互联网大规模数据 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- 业务系统的JVM启动参数推荐
关键业务系统的JVM启动参数推荐,原文链接请参见:http://calvin1978.blogcn.com/articles/jvmoption-2.html
- hdu-5714 拍照(二分)
题目链接: 拍照 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Proble ...
- 【转载】Dubbo与Zookeeper、SpringMVC整合和使用(负载均衡、容错)
http://blog.csdn.net/congcong68/article/details/41113239 互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及 ...
- [转] 利用任务计划重启sqlserver服务
1.建立一个批处理文件restartsqlserver.bat 内容如下: net stop mssqlserver /y net start mssqlser ...
- OC4_XML文件解析
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-// ...
- WCF之服务元数据
服务元数据是用来获得服务的EndPoint的信息,也就是它的ABC. 服务有两种方案可以发布自己的元数据. 一种是基于HTTP-GET协议提供元数据: 一种是元数据交换方式,它往往使用一个专门的终结点 ...
- 超赞值得一试的六款jQuery插件和CSS3应用
1.jQuery图片横向滚动插件 这是一款利用jQuery实现的图片横向滚动插件,我们可以设置任意数量的图片,然后点击左右箭头按钮即可分组浏览这些图片.这款jQuery图片插件的优势有两点,其一是可以 ...
- 分享10款激发灵感的最新HTML5/CSS3应用
1.HTML5/CSS3实现iOS Path菜单 菜单动画很酷 Path菜单相信大家都不陌生吧,它在iOS中非常流行,今天我们要分享的菜单就是利用HTML5和CSS3技术来模拟实现这款iOS Path ...
- MySQL Limit order by
今天写模糊查询的时候,按照时间排序并进行分页时,在mybatis的映射文件中有这样一条sql语句 SELECT <include refid="Base_Column_List&quo ...
- [Silverlight] Visual Studio2010不能安装Silverlight4_Tools,提示语言不一致
今天在装Silverlight4_Tools时出现“必须先安装与 Silverlight Tools 4 语言版本相一致的 Visual Studio 2010.Visual Web Develope ...