51nod1212无向图最小生成树


第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
输出最小生成树的所有边的权值之和。
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
37
prim算法:
#include<stdio.h>
#include<string.h>
#define inf 0x3f3f3f3f
int G[][];
int vis[],lowc[];
int prim(int G[][],int n){
int i,j,p,minc,res=;
memset(vis,,sizeof(vis));//全部初值为0表示没有访问过;
vis[]=;
for(i=;i<=n;i++)
lowc[i]=G[][i];
for(i=;i<=n;i++){
minc=inf;
p=-;
for(j=;j<=n;j++){
if(vis[j]==&&lowc[j]<minc)
{minc=lowc[j];p=j;}
}
if(inf==minc) return -;//原图不连通
res+=minc;
vis[p]=;
for(j=;j<=n;j++){//更新lowc[]
if(vis[j]==&&lowc[j]>G[p][j])
lowc[j]=G[p][j];
}
}
return res;
}
int main(){
int n,m;
int x,y,w;
while(~scanf("%d %d",&n,&m)){
memset(G,inf,sizeof(G));
while(m--){
scanf("%d%d%d",&x,&y,&w);
G[x][y]=G[y][x]=w;
}
printf("%d\n",prim(G,n));
}
}
kruskal算法:
#include <stdio.h>
#include <algorithm> using namespace std; #define _min_(a,b) ((a)<(b)?(a):(b))
#define INF 0x3f3f3f3f
#define MAX_N 1005
#define MAX_E 50005 struct edge
{
int u;
int v;
int cost;
}; edge es[MAX_E]; int N,M;
int W[MAX_N][MAX_N];
int mincost[MAX_N];
bool used[MAX_N]; bool cmp(edge e1, edge e2)
{
return e1.cost < e2.cost;
} // union-find set
int par[MAX_N];
int rank[MAX_N];
void init_inion_find(int n)
{
for(int i=;i<n;i++){
par[i]=i;
rank[i]=;
}
}
int find(int x)
{
if(par[x]==x){
return x;
}else{
return par[x]=find(par[x]);
}
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y){
return;
}
if(rank[x]<rank[y]){
par[x]=y;
}else{
par[y]=x;
if(rank[x]==rank[y]){
rank[x]++;
}
}
}
bool same(int x, int y)
{
return find(x)==find(y);
}
// end of union-find set void init()
{
for(int i=;i<MAX_N;i++){
for(int j=;j<MAX_N;j++){
W[i][j]=INF;
}
mincost[i]=INF;
used[i]=false;
}
} long long kruskal()
{
long long res=;
for(int i=;i<M;i++){
edge e=es[i];
if(!same(e.u, e.v)){
unite(e.u, e.v);
res += e.cost;
}
}
return res;
} int main()
{
//freopen("18_kruskal.txt","r",stdin);
init();
scanf("%d %d",&N,&M);
for(int i=;i<M;i++){
int u,v,cost;
scanf("%d %d %d",&u,&v,&cost);
es[i].u = u-;
es[i].v = v-;
es[i].cost = cost;
}
sort(es,es+M,cmp); init_inion_find(N); long long res = kruskal();
printf("%lld\n",res);
return ;
}
51nod1212无向图最小生成树的更多相关文章
- 51Nod-1212 无向图最小生成树
51Nod: 1212 无向图最小生成树. link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1212 1212 ...
- 51nod1212 无向图最小生成树
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 < ...
- 51 nod 1212 无向图最小生成树(Kruckal算法/Prime算法图解)
1212 无向图最小生成树 N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 收起 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N < ...
- 加权无向图 最小生成树 Prim算法 延迟版和即时版 村里修路该先修哪
本次要解决的问题是:你们村里那些坑坑洼洼的路,到底哪些路才是主干道? 小明:肯定是哪里都能到得了,并且去哪里都相对比较近,并且被大家共用程度高的路是啊! 具体是哪几条路呢?今天就可以给出准确答案 最小 ...
- 无向图最小生成树(prim算法)
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷 ...
- 51Nod 1212 无向图最小生成树 (路径压缩)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- 51Nod 1212无向图最小生成树
prim #include<stdio.h> #include<string.h> #define inf 0x3f3f3f3f ][]; ],lowc[]; ],int n) ...
- 51nod 1212 无向图最小生成树(Kruskal模版题)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- (图论)51NOD 1212 无向图最小生成树
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 <= M ...
随机推荐
- SQL SERVER 中identity用法
在数据库中, 常用的一个流水编号通常会使用 identity 栏位来进行设置, 这种编号的好处是一定不会重覆, 而且一定是唯一的, 这对table中的唯一值特性很重要, 通常用来做客户编号, 订单编号 ...
- SVN 修改URL路径
http://strugglelinux.blog.51cto.com/1009905/672008 标签:休闲 SVN 修改URL路径 职场 原创作品,允许转载,转载时请务必以超链接形式标明文章 原 ...
- c语言中文件的操作
所谓“文件”是指一组相关数据的有序集合.这个数据集有一个名称,叫做文件名.实际上在前面的各章中我们已经多次使用了文件,例如源程序文件.目标文件.可执行文件.库文件 (头文件)等. 文件通常是驻留在外部 ...
- Android进阶笔记16:ListView篇之ListView刷新显示(全局 和 局部)
一.ListView内容变化后,动态刷新的步骤(全局刷新): (1)更新适配器Adapter数据源:(不要使用匿名内部类) (2)调用适配器Adapter的刷新方法notifyDataSetChang ...
- PLS-00201: 必须声明标识符 'UTL_FILE'
解决办法: 用sysdba身份 把UTL_FILE包的执行权限给这个用户. 举例: 1.C:\Users\Anakin>sqlplus /nolog2.SQL> connect /as s ...
- insert 另外一种用法
then into dept01(id) values(deptno) then into dept02(id) values(deptno) else into dept03(id) values( ...
- js函数大全
js函数集·字符串(String) 1.声明 var myString = new String("Every good boy does fine."); var myStrin ...
- Redis 命令 - Sets
SADD key member [member ...] Add one or more members to a set 127.0.0.1:6379> SADD foo hello (int ...
- sql常识-union
SQL UNION 操作符 UNION 操作符用于合并两个或多个 SELECT 语句的结果集. 请注意,UNION 内部的 SELECT 语句必须拥有相同数量的列.列也必须拥有相似的数据类型.同时,每 ...
- 【ROW_NUMBER 函数(Transact-SQL)】
[ROW_NUMBER 函数(Transact-SQL)]返回结果集分区内行的序列号,每个分区的第一行从 1 开始. 注释: ROW_NUMBER() OVER (PARTITION BY COL1 ...