Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 124    Accepted Submission(s): 27

Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the
chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways
from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent
Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.
 
Input
There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.
 
Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 
Sample Input
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 1
 
Sample Output
2 6
 
Source
 
Recommend
We have carefully selected several similar problems for you:  5299 

pid=5298" target="_blank">5298 

pid=5297" target="_blank">5297 5296 

pid=5295" target="_blank">5295 

 

题意:n个点m条无向边,如果从起点0到终点n-1的最短路距离为dist,求最少删除多少条边使得图中不再存在最短路。最多删除多少条边使得图中仍然存在最短路。

思路:先用spfa求一次最短路,开一个road数组,road[i]表示从起点走到i点最短路径所经过的最少边数,然后第二问就是m-road[n-1];再依据最短路的dist数组推断哪些边是最短路上的,用它们又一次构图。跑一遍网络流求最小割。比赛的时候没有在最短路上建边,直接用的原图。果断TLE,又坑了队友=-=

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int MAXN = 2005;
const int MAXM = 200005;
const int N = 1005; int n,m; struct EDGE
{
int u,v,len,next;
}e[MAXM]; struct Edge
{
int to,next,cap,flow;
}edge[MAXM]; int tol;
int head[MAXN]; void init()
{
tol=0;
memset(head,-1,sizeof(head));
} void add(int u,int v,int len)
{
e[tol].u=u;
e[tol].v=v;
e[tol].len=len;
e[tol].next=head[u];
head[u]=tol++;
e[tol].u=v;
e[tol].v=u;
e[tol].len=len;
e[tol].next=head[v];
head[v]=tol++;
} void addedge(int u,int v,int w,int rw=0)
{
edge[tol].to=v;
edge[tol].cap=w;
edge[tol].flow=0;
edge[tol].next=head[u];
head[u]=tol++; edge[tol].to=u;
edge[tol].cap=rw;
edge[tol].flow=0;
edge[tol].next=head[v];
head[v]=tol++;
} int Q[MAXN];
int dep[MAXN],cur[MAXN],sta[MAXN]; bool bfs(int s,int t,int n)
{
int front=0,tail=0;
memset(dep,-1,sizeof(dep[0])*(n+1));
dep[s]=0;
Q[tail++]=s;
while (front<tail)
{
int u=Q[front++];
for (int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if (edge[i].cap>edge[i].flow && dep[v]==-1)
{
dep[v]=dep[u]+1;
if (v==t) return true;
Q[tail++]=v;
}
}
}
return false;
} int dinic(int s,int t,int n)
{
int maxflow=0;
while (bfs(s,t,n))
{
for (int i=0;i<n;i++) cur[i]=head[i];
int u=s,tail=0;
while (cur[s]!=-1)
{
if (u==t)
{
int tp=INF;
for (int i=tail-1;i>=0;i--)
tp=min(tp,edge[sta[i]].cap-edge[sta[i]].flow);
maxflow+=tp;
for (int i=tail-1;i>=0;i--)
{
edge[sta[i]].flow+=tp;
edge[sta[i]^1].flow-=tp;
if (edge[sta[i]].cap-edge[sta[i]].flow==0)
tail=i;
}
u=edge[sta[tail]^1].to;
}
else if (cur[u]!=-1 && edge[cur[u]].cap > edge[cur[u]].flow &&dep[u]+1==dep[edge[cur[u]].to])
{
sta[tail++]=cur[u];
u=edge[cur[u]].to;
}
else
{
while (u!=s && cur[u]==-1)
u=edge[sta[--tail]^1].to;
cur[u]=edge[cur[u]].next;
}
}
}
return maxflow;
} int dist[MAXN];
int vis[MAXN];
int road[MAXN]; void SPFA()
{
memset(vis,0,sizeof(vis));
memset(dist,INF,sizeof(dist));
memset(road,INF,sizeof(road));
dist[0]=0;
road[0]=0;
vis[0]=1;
queue<int>Q;
Q.push(0);
while (!Q.empty())
{
int u=Q.front();
Q.pop();
vis[u]=0;
for (int i=head[u];~i;i=e[i].next)
{
int v=e[i].v;
if (dist[v]>dist[u]+e[i].len)
{
dist[v]=dist[u]+e[i].len;
road[v]=road[u]+1;
if (!vis[v])
{
vis[v]=1;
Q.push(v);
}
}
else if (dist[v]==dist[u]+e[i].len)
{
if (road[v]>road[u]+1)
{
road[v]=road[u]+1;
if (!vis[v])
{
vis[v]=1;
Q.push(v);
}
}
}
}
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j,u,v,w;
while (~sff(n,m))
{
init();
for (i=0;i<m;i++)
{
sfff(u,v,w);
if (u==v) continue;
u--;v--;
add(u,v,w);
}
SPFA();
int cnt=tol;
init();
for (i=0;i<cnt;i++)
{
u=e[i].u;
v=e[i].v;
if (dist[v]==dist[u]+e[i].len)
addedge(u,v,1);
}
int ans=dinic(0,n-1,n);
pf("%d %d\n",ans,m-road[n-1]);
}
return 0;
}

Tricks Device (hdu 5294 最短路+最大流)的更多相关文章

  1. hdu 5294 最短路+最大流 ***

    处理处最短路径图,这个比较巧妙 链接:点我

  2. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  3. hdu 3599(最短路+最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3599 思路:首先spfa求一下最短路,然后对于满足最短路上的边(dist[v]==dist[u]+w) ...

  4. HDU 5294 Tricks Device (最大流+最短路)

    题目链接:HDU 5294 Tricks Device 题意:n个点,m条边.而且一个人从1走到n仅仅会走1到n的最短路径.问至少破坏几条边使原图的最短路不存在.最多破坏几条边使原图的最短路劲仍存在 ...

  5. hdu 5294 Tricks Device 最短路建图+最小割

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Tricks Device Time Limit: 2000/1000 MS (Java/Other ...

  6. HDU 5294 Tricks Device 网络流 最短路

    Tricks Device 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 Description Innocent Wu follows D ...

  7. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  8. SPFA+Dinic HDOJ 5294 Tricks Device

    题目传送门 /* 题意:一无向图,问至少要割掉几条边破坏最短路,问最多能割掉几条边还能保持最短路 SPFA+Dinic:SPFA求最短路时,用cnt[i]记录到i最少要几条边,第二个答案是m - cn ...

  9. HDU5294 Tricks Device(最大流+SPFA) 2015 Multi-University Training Contest 1

    Tricks Device Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

随机推荐

  1. python项目

    python实战项目: http://www.the5fire.com/category/python实战/ python基础教程中的十个项目: python项目练习一:即时标记 python项目练习 ...

  2. poj1180

    斜率优化dp 据说这题朴素的O(n2)dp也可以A 没试过 朴素的dp不难想:f[i]=min(f[j]+sumtime[i]*sumcost[j+1,i]+c*sumcost[j+1,n]) 稍微解 ...

  3. net remoting 服务器端订阅客户端(附源代码)

    remoting 在分布式应用中逐渐在企业级应用发展开来,最初提出分布式应用,主要目的是为了降低服务器的压力,将耗性能的处理放在另外一个程序中,然后将计算结果发送到另外一个应用中.而remoting就 ...

  4. 百度地图API的调用

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  5. I.MX6 android BatteryService jni hacking

    /**************************************************************************** * I.MX6 android Batter ...

  6. Azure 中的多个 VM NIC 和网络虚拟设备

    YU-SHUN WANG Azure 网络高级项目经理 在 2014 年欧洲 TechEd 大会上,我们宣布了在Azure VM 中为多个网络接口 (NIC) 提供支持,并与多家重要厂商合作,在 Az ...

  7. adaboost学习资料收集

    很通俗易懂的一篇博文 http://blog.csdn.net/haidao2009/article/details/7514787 百度搜索研发部的一篇文章 http://stblog.baidu- ...

  8. 五个小例子教你搞懂 JavaScript 作用域问题

    众所周知,JavaScript 的作用域和其他传统语言(类C)差别比较大,掌握并熟练运用JavaScript 的作用域知识,不仅有利于我们阅读理解别人的代码,也有助于我们编写自己的可靠代码. 下面笔者 ...

  9. Java同步问题面试参考指南

    同步 在多线程程序中,同步修饰符用来控制对临界区代码的访问.其中一种方式是用synchronized关键字来保证代码的线程安全性.在Java中,synchronized修饰的代码块或方法不会被多个线程 ...

  10. 【C语言】-选择结构-if语句

    if语句:也可称条件语句,是根据所给定条件的值是真还是假决定执行不同的分支. if语句有单分支.双分支.多分支以及if语句的嵌套等多种形式. 单分支if语句: if (条件表达式) { 语句组1; } ...