Problem Description
There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.

You may wonder why this country has such an
interesting tradition? It has a very long story, but I won't tell you
:).

Let us continue, the party princess's knight win the algorithm
contest. When the devil hears about that, she decided to take some
action.

But before that, there is another party arose recently, the
'MengMengDa' party, everyone in this party feel everything is 'MengMengDa' and
acts like a 'MengMengDa' guy.

While they are very pleased about that, it
brings many people in this kingdom troubles. So they decided to stop
them.

Our hero z*p come again, actually he is very good at Algorithm
contest, so he invites the leader of the 'MengMengda' party xiaod*o to compete
in an algorithm contest.

As z*p is both handsome and talkative, he has
many girl friends to deal with, on the contest day, he find he has 3 dating to
complete and have no time to compete, so he let you to solve the problems for
him.

And the easiest problem in this contest is like that:

There
is n number a_1,a_2,...,a_n on the line. You can choose two set
S(a_s1,a_s2,..,a_sk) and T(a_t1,a_t2,...,a_tm). Each element in S should be at
the left of every element in T.(si < tj for all i,j). S and T shouldn't be
empty.

And what we want is the bitwise XOR of each element in S is equal
to the bitwise AND of each element in T.

How many ways are there to
choose such two sets? You should output the result modulo 10^9+7.

 
Input
The first line contains an integer T, denoting the
number of the test cases.
For each test case, the first line contains a
integers n.
The next line contains n integers a_1,a_2,...,a_n which are
separated by a single space.

n<=10^3, 0 <= a_i <1024,
T<=20.

 
Output
For each test case, output the result in one
line.
 
Sample Input
2
3
1 2 3
4
1 2 3 3
 
Sample Output
1
4
#include<cstdio>
#include<cstring> typedef __int64 LL;
#define mod 1000000007
const int MAXN = ;
const int MAXA = ;
int dp1[MAXN][MAXA], dp2[MAXN][MAXA], dp3[MAXN][MAXA];
int a[MAXN]; int main()
{
int T, n, i, j, t;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(i = ; i < n; i++)
scanf("%d",&a[i]);
memset(dp1, , sizeof(dp1));
memset(dp2, , sizeof(dp2));
memset(dp3, , sizeof(dp3));
dp1[][a[]] = ;
for(i = ; i < n - ; i++) {
dp1[i][a[i]]++; //单独一个元素构成一个集合
for(j = ; j < MAXA; j++) {
if(dp1[i-][j]) {
dp1[i][j] += dp1[i-][j]; //不添加第i个元素进行异或,继承之前算好的
dp1[i][j] %= mod; t = j ^ a[i]; //添加第i个元素进行异或
dp1[i][t] += dp1[i-][j];
dp1[i][t] %= mod;
}
}
}
dp2[n-][a[n-]] = ;
dp3[n-][a[n-]] = ;
for(i = n-; i > ; i--) {
dp2[i][a[i]]++;
dp3[i][a[i]]++; //单独一个元素构成一个集合
for(j = ; j < MAXA; j++) {
if(dp2[i+][j]) {
dp2[i][j] += dp2[i+][j]; //不添加第i个元素进行按位与
dp2[i][j] %= mod; t = j & a[i]; //添加第i个元素进行按位与
dp2[i][t] += dp2[i+][j];
dp2[i][t] %= mod; dp3[i][t] += dp2[i+][j]; //添加第i个元素进行按位与
dp3[i][t] %= mod;
}
}
}
int ans = ;
for(i = ; i < n - ; i++) {
for(j = ; j < MAXA; j++) {
if(dp1[i][j] && dp3[i+][j]) {
ans += (LL(dp1[i][j]) * dp3[i+][j] % mod);
ans %= mod;
}
}
}
printf("%d\n", ans);
}
return ;
}
 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=1e3+;
const int maxm=*;
const int mod=1e9+;
int n,a[maxn];
int dp[maxn][maxm][],dps[maxn][maxm][];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int maxi=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
memset(dp,,sizeof(dp));
memset(dps,,sizeof(dps));
for(int i=;i<=n;i++)
{
dp[i][a[i]][]=;
dps[i][a[i]][]=;
for(int j=;j<maxm;j++)
if(dp[i-][j][])
{
dp[i][j][]=(dp[i][j][]+dp[i-][j][])%mod;
dp[i][j^a[i]][]=(dp[i][j^a[i]][]+dp[i-][j][])%mod;
dps[i][j^a[i]][]=(dps[i][j^a[i]][]+dp[i-][j][])%mod;
}
}
for(int i=n;i>=;i--)
{
dp[i][a[i]][]=;
for(int j=;j<maxm;j++)
if(dp[i+][j][])
{
dp[i][j][]=(dp[i][j][]+dp[i+][j][])%mod;
dp[i][j&a[i]][]=(dp[i][j&a[i]][]+dp[i+][j][])%mod;
}
}
long long ans=;
for(int i=;i<n;i++)
for(int j=;j<maxm;j++)
if(dps[i][j][])
ans=(ans+(long long)dps[i][j][]*(long long)dp[i+][j][])%mod;
printf("%I64d\n",ans);
}
return ;
}

The Romantic Hero的更多相关文章

  1. HDU 4901 The Romantic Hero

    The Romantic Hero Time Limit: 3000MS   Memory Limit: 131072KB   64bit IO Format: %I64d & %I64u D ...

  2. HDU4901 The Romantic Hero 计数DP

    2014多校4的1005 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4901 The Romantic Hero Time Limit: 6000/30 ...

  3. HDU 4901 The Romantic Hero (计数DP)

    The Romantic Hero 题目链接: http://acm.hust.edu.cn/vjudge/contest/121349#problem/E Description There is ...

  4. HDU 4901 The Romantic Hero(二维dp)

    题目大意:给你n个数字,然后分成两份,前边的一份里面的元素进行异或,后面的一份里面的元素进行与.分的时候依照给的先后数序取数,后面的里面的全部的元素的下标一定比前面的大.问你有多上种放元素的方法能够使 ...

  5. HDU 4901 The Romantic Hero 题解——S.B.S.

    The Romantic Hero Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  6. HDOJ 4901 The Romantic Hero

    DP....扫两次合并 The Romantic Hero Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  7. 2014多校第四场1005 || HDU 4901 The Romantic Hero (DP)

    题目链接 题意 :给你一个数列,让你从中挑选一些数组成集合S,挑另外一些数组成集合T,要求是S中的每一个数在原序列中的下标要小于T中每一个数在原序列中下标.S中所有数按位异或后的值要与T中所有的数按位 ...

  8. hdu 4901 The Romantic Hero (dp)

    题目链接 题意:给一个数组a,从中选择一些元素,构成两个数组s, t,使s数组里的所有元素异或 等于 t数组里的所有元素 位于,求有多少种构成方式.要求s数组里 的所有的元素的下标 小于 t数组里的所 ...

  9. HDU 4901(杭电多校训练#3 1005题)The Romantic Hero(DP)

    题目地址:HDU 4901 这题没想到最后竟然可以做出来.. .. 这题用了两次DP,先从前往后求一次异或的.再从后往前求一次与运算的. 各自是 1:求异或的时候,定义二维数组huo[1000][10 ...

随机推荐

  1. Oracle11g TNS-12541:TNS无监听程序

    Oracle11g TNS-12541:TNS 无监听程序 问题描述:Oracle11.2客户端访问服务器端服务一直正常,隔了一段时间没有用,再次连接时出现错误“TNS-12541:TNS 无监听程序 ...

  2. js变量申明提前及缺省参数

    现在最先的行为准则:js变量申明必须带var:然后开始随笔: 函数中的变量申明在编译的时候都会提到函数开头. 例如: function foo(){ console.log('some code he ...

  3. SQL Server 执行计划

    当一个查询被提交时,发生了什么? 向SQL Server提交一个查询时,sever上的许多进程会在这个查询上开始工作. 这些进程的目标就是管理这个系统,使得这个查询可以选择,插入,更新,删除数据. 每 ...

  4. HBase Shell手动移动Region

    在生产环境中很有可能有那么几个Region比较大,但是都运行在同一个Regionserver中. 这个时候就需要手动将region移动到负载低的Regionserver中. 步骤: 1.找到要移动的r ...

  5. hadoop HDFS 写入吞吐量

    最近一个项目 在大把大把的使用hadoop-HDFS,关于HDFS 的优势网上都快说烂了,这里不再说了,免得被.. 呵呵 废话少说,开整 1.场景描述: 服务器A 监听 服务器B分发任务socket. ...

  6. 【bz2002】弹飞绵羊

    题意: 给出n个节点 及其父亲 和m个指令1:表示求节点i到根节点(n+1)的距离2:表示将节点i的父亲更换为j 题解: 动态树link.cut.access模板题 貌似没什么难度- - 代码: #i ...

  7. 第二百七十四、五、六天 how can I 坚持

    三天小长假这么快就过去了,好快啊.基本都是在济南过的. 元旦.坐车回济南.下午在万科新里程看了一下午房子,没有买啊,93的现在八千六七,有点贵啊,户型也不是自己喜欢的. 晚上一块吃了个饭,还行,晚上在 ...

  8. HTML5每日一练之input新增加的URL类型与email类型应用

    1.URL类型: <form> <input name="urls" type="url" value="http://www.w3 ...

  9. protobuf 作为配置文件

    公司每个project代码中,都有一个Config类,作为模块启动的配置.其实现如下 struct Config { int num; char * file_name; int load_from_ ...

  10. Codeforces Round #250 (Div. 1) D. The Child and Sequence (线段树)

    题目链接:http://codeforces.com/problemset/problem/438/D 给你n个数,m个操作,1操作是查询l到r之间的和,2操作是将l到r之间大于等于x的数xor于x, ...