Problem Description
There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.

You may wonder why this country has such an
interesting tradition? It has a very long story, but I won't tell you
:).

Let us continue, the party princess's knight win the algorithm
contest. When the devil hears about that, she decided to take some
action.

But before that, there is another party arose recently, the
'MengMengDa' party, everyone in this party feel everything is 'MengMengDa' and
acts like a 'MengMengDa' guy.

While they are very pleased about that, it
brings many people in this kingdom troubles. So they decided to stop
them.

Our hero z*p come again, actually he is very good at Algorithm
contest, so he invites the leader of the 'MengMengda' party xiaod*o to compete
in an algorithm contest.

As z*p is both handsome and talkative, he has
many girl friends to deal with, on the contest day, he find he has 3 dating to
complete and have no time to compete, so he let you to solve the problems for
him.

And the easiest problem in this contest is like that:

There
is n number a_1,a_2,...,a_n on the line. You can choose two set
S(a_s1,a_s2,..,a_sk) and T(a_t1,a_t2,...,a_tm). Each element in S should be at
the left of every element in T.(si < tj for all i,j). S and T shouldn't be
empty.

And what we want is the bitwise XOR of each element in S is equal
to the bitwise AND of each element in T.

How many ways are there to
choose such two sets? You should output the result modulo 10^9+7.

 
Input
The first line contains an integer T, denoting the
number of the test cases.
For each test case, the first line contains a
integers n.
The next line contains n integers a_1,a_2,...,a_n which are
separated by a single space.

n<=10^3, 0 <= a_i <1024,
T<=20.

 
Output
For each test case, output the result in one
line.
 
Sample Input
2
3
1 2 3
4
1 2 3 3
 
Sample Output
1
4
#include<cstdio>
#include<cstring> typedef __int64 LL;
#define mod 1000000007
const int MAXN = ;
const int MAXA = ;
int dp1[MAXN][MAXA], dp2[MAXN][MAXA], dp3[MAXN][MAXA];
int a[MAXN]; int main()
{
int T, n, i, j, t;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(i = ; i < n; i++)
scanf("%d",&a[i]);
memset(dp1, , sizeof(dp1));
memset(dp2, , sizeof(dp2));
memset(dp3, , sizeof(dp3));
dp1[][a[]] = ;
for(i = ; i < n - ; i++) {
dp1[i][a[i]]++; //单独一个元素构成一个集合
for(j = ; j < MAXA; j++) {
if(dp1[i-][j]) {
dp1[i][j] += dp1[i-][j]; //不添加第i个元素进行异或,继承之前算好的
dp1[i][j] %= mod; t = j ^ a[i]; //添加第i个元素进行异或
dp1[i][t] += dp1[i-][j];
dp1[i][t] %= mod;
}
}
}
dp2[n-][a[n-]] = ;
dp3[n-][a[n-]] = ;
for(i = n-; i > ; i--) {
dp2[i][a[i]]++;
dp3[i][a[i]]++; //单独一个元素构成一个集合
for(j = ; j < MAXA; j++) {
if(dp2[i+][j]) {
dp2[i][j] += dp2[i+][j]; //不添加第i个元素进行按位与
dp2[i][j] %= mod; t = j & a[i]; //添加第i个元素进行按位与
dp2[i][t] += dp2[i+][j];
dp2[i][t] %= mod; dp3[i][t] += dp2[i+][j]; //添加第i个元素进行按位与
dp3[i][t] %= mod;
}
}
}
int ans = ;
for(i = ; i < n - ; i++) {
for(j = ; j < MAXA; j++) {
if(dp1[i][j] && dp3[i+][j]) {
ans += (LL(dp1[i][j]) * dp3[i+][j] % mod);
ans %= mod;
}
}
}
printf("%d\n", ans);
}
return ;
}
 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=1e3+;
const int maxm=*;
const int mod=1e9+;
int n,a[maxn];
int dp[maxn][maxm][],dps[maxn][maxm][];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int maxi=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
memset(dp,,sizeof(dp));
memset(dps,,sizeof(dps));
for(int i=;i<=n;i++)
{
dp[i][a[i]][]=;
dps[i][a[i]][]=;
for(int j=;j<maxm;j++)
if(dp[i-][j][])
{
dp[i][j][]=(dp[i][j][]+dp[i-][j][])%mod;
dp[i][j^a[i]][]=(dp[i][j^a[i]][]+dp[i-][j][])%mod;
dps[i][j^a[i]][]=(dps[i][j^a[i]][]+dp[i-][j][])%mod;
}
}
for(int i=n;i>=;i--)
{
dp[i][a[i]][]=;
for(int j=;j<maxm;j++)
if(dp[i+][j][])
{
dp[i][j][]=(dp[i][j][]+dp[i+][j][])%mod;
dp[i][j&a[i]][]=(dp[i][j&a[i]][]+dp[i+][j][])%mod;
}
}
long long ans=;
for(int i=;i<n;i++)
for(int j=;j<maxm;j++)
if(dps[i][j][])
ans=(ans+(long long)dps[i][j][]*(long long)dp[i+][j][])%mod;
printf("%I64d\n",ans);
}
return ;
}

The Romantic Hero的更多相关文章

  1. HDU 4901 The Romantic Hero

    The Romantic Hero Time Limit: 3000MS   Memory Limit: 131072KB   64bit IO Format: %I64d & %I64u D ...

  2. HDU4901 The Romantic Hero 计数DP

    2014多校4的1005 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4901 The Romantic Hero Time Limit: 6000/30 ...

  3. HDU 4901 The Romantic Hero (计数DP)

    The Romantic Hero 题目链接: http://acm.hust.edu.cn/vjudge/contest/121349#problem/E Description There is ...

  4. HDU 4901 The Romantic Hero(二维dp)

    题目大意:给你n个数字,然后分成两份,前边的一份里面的元素进行异或,后面的一份里面的元素进行与.分的时候依照给的先后数序取数,后面的里面的全部的元素的下标一定比前面的大.问你有多上种放元素的方法能够使 ...

  5. HDU 4901 The Romantic Hero 题解——S.B.S.

    The Romantic Hero Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  6. HDOJ 4901 The Romantic Hero

    DP....扫两次合并 The Romantic Hero Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  7. 2014多校第四场1005 || HDU 4901 The Romantic Hero (DP)

    题目链接 题意 :给你一个数列,让你从中挑选一些数组成集合S,挑另外一些数组成集合T,要求是S中的每一个数在原序列中的下标要小于T中每一个数在原序列中下标.S中所有数按位异或后的值要与T中所有的数按位 ...

  8. hdu 4901 The Romantic Hero (dp)

    题目链接 题意:给一个数组a,从中选择一些元素,构成两个数组s, t,使s数组里的所有元素异或 等于 t数组里的所有元素 位于,求有多少种构成方式.要求s数组里 的所有的元素的下标 小于 t数组里的所 ...

  9. HDU 4901(杭电多校训练#3 1005题)The Romantic Hero(DP)

    题目地址:HDU 4901 这题没想到最后竟然可以做出来.. .. 这题用了两次DP,先从前往后求一次异或的.再从后往前求一次与运算的. 各自是 1:求异或的时候,定义二维数组huo[1000][10 ...

随机推荐

  1. Codeforces Round #363

    http://codeforces.com/contest/699 ALaunch of Collider 题意:n个球,每个球向左或右,速度都为1米每秒,问第一次碰撞的时间,否则输出-1 贪心最短时 ...

  2. CreateThread函数&amp;&amp;CString::GetBuffer函数

    对这个两个常见的windows下的函数学习了一下: //最简单的创建多线程实例 #include <stdio.h> #include <windows.h> //子线程函数 ...

  3. oc_转_NSArrray 和 NSMutableArrray

    Objective C 中除了可以使用C中的基本数组外,如 int[5];,char word[] = {‘a’, 'b’, 'c’};,Foundation 还提供了 NSArray 类.Found ...

  4. HTML 5的革新:结构之美

    HTML 5是什么,无须我在这里赘述了.对于HTML 5的革新,按我的理解,可以总结为语义明确的标签体系.化繁为简的富媒体支持.神奇的本地数据存储技术.不需要插件的富动画(canvas).强大的API ...

  5. UVALive 7454 Parentheses (栈+模拟)

    Parentheses 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/A Description http://7xjob4.c ...

  6. JFinal搭建时,提示着不到contextpath

    出项类似html截断现象 原因:此处是由于html不识别contextPath上下文所造成.其根本原因是html中使用contextPath与configHandler中加载的不一致造成(basePa ...

  7. Unity3D之Mecanim动画系统学习笔记(九):Blend Tree(混合树)

    认识Blend Tree 我们在Animator Controller中除了可以创建一个State外还可以创建一个Blend Tree,如下: 那么我们看下新创建的Blend Tree和State有什 ...

  8. C#学习笔记(四):委托和事件

    刚开始学习C#的时候就写过了,直接给地址了: 委托.匿名函数.Lambda表达式和事件的学习 委托学习续:Action.Func和Predicate

  9. 用C#调用蓝牙编程

    2013-04-22 09:41:06 什么是蓝牙? 现在只能手机这么发达,蓝牙对我们来说肯定不陌生.我来介绍一下官方概念: 蓝牙,是一种支持设备短距离通信(一般10m内)的无线电技术.能在包括移动电 ...

  10. cloudstack 修改显示名称

    http://192.168.153.245:8900/client/api?command=updateVirtualMachineid=922d15e1-9be0-44ac-9494-ce5afc ...