易证我们走的时候只会从某一层的某端点走向另一端点、然后走向下一层的某端点..

所以建图然后dijkstra就行了

调了一年以后发现dijkstra写错了

 #include<bits/stdc++.h>
#define pa pair<ll,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=4e5+;
const ll inf=1e18; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int b,ne;ll l;
}eg[maxn*];
struct Node{
ll x,y,l;
}pos[maxn];
int N,egh[maxn],ect;
ll dd[maxn];
bool flag[maxn];
priority_queue<pa,vector<pa>,greater<pa> > q; inline bool cmp(Node a,Node b){return a.l<b.l;}
inline void adeg(int a,int b,ll l){
eg[++ect].b=b;eg[ect].ne=egh[a];eg[ect].l=l;egh[a]=ect;
}
inline ll dis(int a,int b){return abs(pos[a].x-pos[b].x)+abs(pos[a].y-pos[b].y);} void dijkstra(){
CLR(dd,-);
dd[+N]=;q.push(make_pair(,+N));
while(!q.empty()){
int p=q.top().second;q.pop();
if(flag[p]) continue;
flag[p]=;
for(int i=egh[p];i;i=eg[i].ne){
int b=eg[i].b;
if(dd[b]==-||dd[b]>dd[p]+eg[i].l){
dd[b]=dd[p]+eg[i].l;
q.push(make_pair(dd[b],b));
}
}
}
} int main(){
//freopen(".in","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N;i++)
pos[i].x=rd(),pos[i].y=rd(),pos[i].l=max(pos[i].x,pos[i].y);
pos[N+].x=,pos[N+].y=,pos[N+].l=;
N++;
sort(pos+,pos+N+,cmp);
int lst1=-,lst2=-;
int la=-,lb=-;
for(i=N,j=N,k=N;i;i){
int aa=-,bb=-;
for(;pos[j].l==pos[i].l&&j;j--){
if(aa==-||pos[j].x<pos[aa].x||(pos[j].x==pos[aa].x&&pos[j].y>pos[aa].y)) aa=j;
if(bb==-||pos[j].y<pos[bb].y||(pos[j].y==pos[bb].y&&pos[j].x>pos[bb].x)) bb=j;
}
if(lst1==-) lst1=aa;
if(lst2==-) lst2=bb;
if(la!=-) adeg(aa+N,la,dis(la,aa)),adeg(bb+N,la,dis(la,bb));
if(lb!=-) adeg(aa+N,lb,dis(lb,aa)),adeg(bb+N,lb,dis(lb,bb));
adeg(aa,bb+N,dis(aa,bb));adeg(bb,aa+N,dis(aa,bb));
la=aa,lb=bb;
}
dijkstra();
printf("%I64d\n",min(dd[lst1+N],dd[lst2+N]));
return ;
}

cf1066F Yet Another 2D Walking (贪心+dijkstra)的更多相关文章

  1. CF1066F Yet another 2D Walking

    DP 由图可以知道优先级相同的点都在一个"7"字形中 所以在走当前的优先级的点时最好从右下的点走到左上的点,或从从左上的点走到右下的点 那记dp[i][0]表示在走完第i个优先级时 ...

  2. CodeForces Round #515 DIv.3 F. Yet another 2D Walking

    http://codeforces.com/contest/1066/problem/F Maksim walks on a Cartesian plane. Initially, he stands ...

  3. Dijkstra最短路径算法[贪心]

    Dijkstra算法的标记和结构与prim算法的用法十分相似.它们两者都会从余下顶点的优先队列中选择下一个顶点来构造一颗扩展树.但千万不要把它们混淆了.它们解决的是不同的问题,因此,所操作的优先级也是 ...

  4. NYOJ 203 三国志(Dijkstra+贪心)

    三国志 时间限制:3000 ms  |  内存限制:65535 KB 难度:5 描写叙述 <三国志>是一款非常经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.如今他把游戏简化一下 ...

  5. [C++]单源最短路径:迪杰斯特拉(Dijkstra)算法(贪心算法)

    1 Dijkstra算法 1.1 算法基本信息 解决问题/提出背景 单源最短路径(在带权有向图中,求从某顶点到其余各顶点的最短路径) 算法思想 贪心算法 按路径长度递增的次序,依次产生最短路径的算法 ...

  6. [C++]多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS n*Dijkstra算法(贪心算法)

    1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上 ...

  7. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces 1154D - Walking Robot - [贪心]

    题目链接:https://codeforces.com/contest/1154/problem/D 题解: 贪心思路,没有太阳的时候,优先用可充电电池走,万不得已才用普通电池走.有太阳的时候,如果可 ...

  9. 『算法设计_伪代码』贪心算法_最短路径Dijkstra算法

    Dijkstra算法实际上是一个贪婪算法(Greedy algorithm).因为该算法总是试图优先访问每一步循环中距离起始点最近的下一个结点.Dijkstra算法的过程如下图所示. 初始化 给定图中 ...

随机推荐

  1. 20155223 Exp8 WEB基础实践

    20155223 Exp8 WEB基础实践 基础问题回答 什么是表单? 表单是一个包含表单元素的区域. 表单元素是允许用户在表单中(比如:文本域.下拉列表.单选框.复选框等等)输入信息的元素. 表单使 ...

  2. 20155227《网络对抗》Exp7 网络欺诈防范

    20155227<网络对抗>Exp7 网络欺诈防范 实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建 ...

  3. 【Qt】QLabel实现的圆形图像

    本篇只描述圆形图像的两种实现方式,动态阴影边框如下: [Qt]QLabel之动态阴影边框 目前实现的效果如下: 左右两边实现的方式不同: 右边比较简单 min-width: 100px; max-wi ...

  4. Linux 平台和 Windows平台下 Unicode与UTF-8互转

    Windows: unsigned char * make_utf8_string(const wchar_t *unicode) { , index = , out_index = ; unsign ...

  5. css怎样去掉多个Img标签之间的间隙

    在写css的时候经常会遇到这样的情况,两张宽度加起来是2n的图片,在宽度为2n的容器中放不下,这是因为两张图片之间有一段间隙的缘故,产生这种现象的原因是浏览器把两个img标签之间的空格当成了空白节点. ...

  6. webWorker

    一.webWorker之初体验 在"setTimeout那些事儿"中,说到JavaScript是单线程.也就是同一时间只能做同一事情. 也好理解,作为浏览器脚本语言,如果JavaS ...

  7. PAT甲题题解-1115. Counting Nodes in a BST (30)-(构建二分搜索树+dfs)

    题意:给出一个序列,构建二叉搜索树(BST),输出二叉搜索树最后两层的节点个数n1和n2,以及他们的和sum: n1 + n2 = sum 递归建树,然后再dfs求出最大层数,接着再dfs计算出最后两 ...

  8. 《Linux内核分析》第二周:操作系统是如何工作的

    杨舒雯 20135324 北京电子科技学院 杨舒雯 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1 ...

  9. java向上转型和向下转型

    转型是在继承的基础上而言的,继承是面向对象语言中,代码复用的一种机制,通过继承,子类可以复用父类的功能,如果父类不能满足当前子类的需求,则子类可以重写父类中的方法来加以扩展. 向上转型:子类引用的对象 ...

  10. 在eclipse中编译调试ns3

    1首先把ns3项目导入eclipse 然后把上面的的ns3按照上面的提示即可导入成功.   然后可以运行一下 ./waf configure     2 配置C/C++ Build 右键工程,选择属性 ...