cf1066F Yet Another 2D Walking (贪心+dijkstra)
易证我们走的时候只会从某一层的某端点走向另一端点、然后走向下一层的某端点..
所以建图然后dijkstra就行了
调了一年以后发现dijkstra写错了
#include<bits/stdc++.h>
#define pa pair<ll,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=4e5+;
const ll inf=1e18; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int b,ne;ll l;
}eg[maxn*];
struct Node{
ll x,y,l;
}pos[maxn];
int N,egh[maxn],ect;
ll dd[maxn];
bool flag[maxn];
priority_queue<pa,vector<pa>,greater<pa> > q; inline bool cmp(Node a,Node b){return a.l<b.l;}
inline void adeg(int a,int b,ll l){
eg[++ect].b=b;eg[ect].ne=egh[a];eg[ect].l=l;egh[a]=ect;
}
inline ll dis(int a,int b){return abs(pos[a].x-pos[b].x)+abs(pos[a].y-pos[b].y);} void dijkstra(){
CLR(dd,-);
dd[+N]=;q.push(make_pair(,+N));
while(!q.empty()){
int p=q.top().second;q.pop();
if(flag[p]) continue;
flag[p]=;
for(int i=egh[p];i;i=eg[i].ne){
int b=eg[i].b;
if(dd[b]==-||dd[b]>dd[p]+eg[i].l){
dd[b]=dd[p]+eg[i].l;
q.push(make_pair(dd[b],b));
}
}
}
} int main(){
//freopen(".in","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N;i++)
pos[i].x=rd(),pos[i].y=rd(),pos[i].l=max(pos[i].x,pos[i].y);
pos[N+].x=,pos[N+].y=,pos[N+].l=;
N++;
sort(pos+,pos+N+,cmp);
int lst1=-,lst2=-;
int la=-,lb=-;
for(i=N,j=N,k=N;i;i){
int aa=-,bb=-;
for(;pos[j].l==pos[i].l&&j;j--){
if(aa==-||pos[j].x<pos[aa].x||(pos[j].x==pos[aa].x&&pos[j].y>pos[aa].y)) aa=j;
if(bb==-||pos[j].y<pos[bb].y||(pos[j].y==pos[bb].y&&pos[j].x>pos[bb].x)) bb=j;
}
if(lst1==-) lst1=aa;
if(lst2==-) lst2=bb;
if(la!=-) adeg(aa+N,la,dis(la,aa)),adeg(bb+N,la,dis(la,bb));
if(lb!=-) adeg(aa+N,lb,dis(lb,aa)),adeg(bb+N,lb,dis(lb,bb));
adeg(aa,bb+N,dis(aa,bb));adeg(bb,aa+N,dis(aa,bb));
la=aa,lb=bb;
}
dijkstra();
printf("%I64d\n",min(dd[lst1+N],dd[lst2+N]));
return ;
}
cf1066F Yet Another 2D Walking (贪心+dijkstra)的更多相关文章
- CF1066F Yet another 2D Walking
DP 由图可以知道优先级相同的点都在一个"7"字形中 所以在走当前的优先级的点时最好从右下的点走到左上的点,或从从左上的点走到右下的点 那记dp[i][0]表示在走完第i个优先级时 ...
- CodeForces Round #515 DIv.3 F. Yet another 2D Walking
http://codeforces.com/contest/1066/problem/F Maksim walks on a Cartesian plane. Initially, he stands ...
- Dijkstra最短路径算法[贪心]
Dijkstra算法的标记和结构与prim算法的用法十分相似.它们两者都会从余下顶点的优先队列中选择下一个顶点来构造一颗扩展树.但千万不要把它们混淆了.它们解决的是不同的问题,因此,所操作的优先级也是 ...
- NYOJ 203 三国志(Dijkstra+贪心)
三国志 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描写叙述 <三国志>是一款非常经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.如今他把游戏简化一下 ...
- [C++]单源最短路径:迪杰斯特拉(Dijkstra)算法(贪心算法)
1 Dijkstra算法 1.1 算法基本信息 解决问题/提出背景 单源最短路径(在带权有向图中,求从某顶点到其余各顶点的最短路径) 算法思想 贪心算法 按路径长度递增的次序,依次产生最短路径的算法 ...
- [C++]多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS n*Dijkstra算法(贪心算法)
1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上 ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)
E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- Codeforces 1154D - Walking Robot - [贪心]
题目链接:https://codeforces.com/contest/1154/problem/D 题解: 贪心思路,没有太阳的时候,优先用可充电电池走,万不得已才用普通电池走.有太阳的时候,如果可 ...
- 『算法设计_伪代码』贪心算法_最短路径Dijkstra算法
Dijkstra算法实际上是一个贪婪算法(Greedy algorithm).因为该算法总是试图优先访问每一步循环中距离起始点最近的下一个结点.Dijkstra算法的过程如下图所示. 初始化 给定图中 ...
随机推荐
- Python基础之公共方法
公共方法:就是列表,元组,字典,字符串能共同使用的方法: Python内置函数 内置函数罗列 函数 描述 备注 len(item) 计算容器中的元素个数 del(item) 删除变量 del有两种方法 ...
- kettle学习笔记(四)——kettle输入步骤
一.输入步骤概述 输入步骤主要分为以下几类: • 生成记录/自定义常量 • 获取系统信息 • 表输入 • 文本文件输入 • XML 文件输入 • Json输入 • 其他输入步骤 二.生成记录和自定义常 ...
- 20155210 EXP6 信息搜集与漏洞扫描
20155210 EXP6 信息搜集与漏洞扫描 信息搜集 外围信息搜集 通过DNS和IP挖掘目标网站的信息 whois 域名注册信息查询 我们通过输入whois qq.com可查询到3R注册信息,包括 ...
- [arm学习]makefile学习总结
makefile不仅仅是一个命令的集合体,其中有一些规则是需要理解掌握的. 首先,了解makefile的规则: //-----------格式---------- 目标 : 依赖1,依赖2 (TAP键 ...
- 11.7 (下午)开课二个月零三天 (PDO)
PDO访问方式操作数据库 mysqli是专门访问MySQL数据库的,不能访问其它数据库.PDO可以访问多种的数据库,它把操作类合并在一起,做成一个数据访问抽象层,这个抽象层就是PDO,根据类操作对 ...
- Scala学习(二)练习
Scala控制结构和函数&练习 1. 一个数字如果为正数,则它的signum为1:如果是负数,则signum为-1:如果为0,则signum为0:编写一个函数来计算这个值 简单逻辑判断: 测试 ...
- 老项目迁移到 springboot 过程
打算把detectx迁移,毕竟springboot更适合它, 首先我是用的快速建立的项目,springboot版本为 1.5.19.RELEASE ,官网查了下,这个是GA稳定生产环境版本 然后如果要 ...
- Django高并发负载均衡
1 什么是负载均衡? 当一台服务器的性能达到极限时,我们可以使用服务器集群来提高网站的整体性能.那么,在服务器集群中,需要有一台服务器充当调度者的角色,用户的所有请求都会首先由它接收,调度者再根据每台 ...
- Android Studio Xposed模块编写(二)
阅读本文前,假设读者已经看过Android Studio Xposed模块编写(一) 相关环境已经搭建完成.本文演示案例与上文环境一致,不在赘述. 1.概述 Xposed是非常牛叉的一款hook框架 ...
- Markdown 入门指南
导语: Markdown是一种轻量级的标记语言,语法简单,学习成本不算太高,但确实可以让你专注于文字,不用太分心与排版等等. Markdown 官方文档 这里可以看到官方的Markdown语法规则: ...