SVM参数解析
一、Opencv中的核函数定义(4种):
1、CvSVM::LINEAR : 线性内核,没有任何向映射至高维空间,线性区分(或回归)在原始特点空间中被完成,这是最快的选择。
2、CvSVM::POLY : 多项式内核:
3、CvSVM::RBF : 基于径向的函数,对于大多半景象都是一个较好的选择:
4、CvSVM::SIGMOID : Sigmoid函数内核:
二、svm_type:指定SVM的类型(5种):
1、CvSVM::C_SVC : C类支撑向量分类机。 n类分组 (n≥2),容许用异常值处罚因子C进行不完全分类。
2、CvSVM::NU_SVC : 类支撑向量分类机。n类似然不完全分类的分类器。参数为
庖代C(其值在区间【0,1】中,nu越大,决定计划鸿沟越腻滑)。
3、CvSVM::ONE_CLASS : 单分类器,所有的练习数据提取自同一个类里,然后SVM建树了一个分界线以分别该类在特点空间中所占区域和其它类在特点空间中所占区域。
4、CvSVM::EPS_SVR : 类支撑向量回归机。练习集中的特点向量和拟合出来的超平面的间隔须要小于p。异常值处罚因子C被采取。
5、CvSVM::NU_SVR : 类支撑向量回归机。
庖代了 p
1 #include <cv. 2 #include <highgui.h>
#include <ml.h>
#include <cxcore.h> #include <iostream>
using namespace std; int main()
{
// step 1:
//训练数据的分类标记,即4类
float labels[] = { 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0 };
CvMat labelsMat = cvMat(, , CV_32FC1, labels);
//训练数据矩阵
float trainingData[][] = { { , }, { , }, { , }, { -, }, { , }, { -, }, { , }, { , }, { , }, { , }, { , }, { , }, { , }, { , }, { , }, { , - } };
CvMat trainingDataMat = cvMat(, , CV_32FC1, trainingData); // step 2:
//训练参数设定
CvSVMParams params;
params.svm_type = CvSVM::C_SVC; //SVM类型
params.kernel_type = CvSVM::LINEAR; //核函数的类型 //SVM训练过程的终止条件, max_iter:最大迭代次数 epsilon:结果的精确性
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, , FLT_EPSILON); // step 3:
//启动训练过程
CvSVM SVM;
SVM.train(&trainingDataMat, &labelsMat, NULL, NULL, params); // step 4:
//使用训练所得模型对新样本进行分类测试
for (int i = -; i<; i++)
{
for (int j = -; j<; j++)
{
float a[] = { i, j };
CvMat sampleMat;
cvInitMatHeader(&sampleMat, , , CV_32FC1, a);
cvmSet(&sampleMat, , , i); // Set M(i,j)
cvmSet(&sampleMat, , , j); // Set M(i,j)
float response = SVM.predict(&sampleMat);
cout << response << " ";
}
cout << endl;
} // step 5:
//获取支持向量
int c = SVM.get_support_vector_count();
cout << endl;
for (int i = ; i<c; i++)
{
const float* v = SVM.get_support_vector(i);
cout << *v << " ";
}
cout << endl; system("pause");
return ;
}
三、InitMatHeader初始化矩阵头
CvMat* cvInitMatHeader( CvMat* mat, int rows, int cols, int type,void* data=NULL, int step=CV_AUTOSTEP );
mat
指针指向要被初始化的矩阵头.
rows
矩阵的行数.
cols
矩阵的列数.
type
矩阵元素类型.
data
可选的,将指向数据指针分配给矩阵头.
step
排列后的数据的整个行宽,默认状态下,使用STEP的最小可能值。也就是说默认情况下假定矩阵的行与行之间无隙.
函数 cvInitMatHeader 初始化已经分配了的 CvMat 结构. 它可以被OpenCV矩阵函数用于处理原始数据。
例如, 下面的代码计算通用数组格式存贮的数据的矩阵乘积.
计算两个矩阵的积
double a[] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };
double b[] = { 1, 5, 9,
2, 6, 10,
3, 7, 11,
4, 8, 12 };
double c[9];
CvMat Ma, Mb, Mc ;
cvInitMatHeader( &Ma, 3, 4, CV_64FC1, a );
cvInitMatHeader( &Mb, 4, 3, CV_64FC1, b );
cvInitMatHeader( &Mc, 3, 3, CV_64FC1, c );
cvMatMulAdd( &Ma, &Mb, 0, &Mc );
// c 数组存贮 a(3x4) 和 b(4x3) 矩阵的积
SVM参数解析的更多相关文章
- 写个C#命令行参数解析的小工具
最近测试工作做的比较多因此时常要创建一些控制台类型的应用程序.因为程序有不同的参数开关,需要在程序启动的时候通过命令行来给程序传递各种开关和参数.直接操作args有些不方便,所以就写了个解析参数的小工 ...
- Python--命令行参数解析Demo
写没有操作界面的程序时,最讨厌的就是参数解析问题,尤其是很多参数那种,下面是一个小Demo,拿出来与各位分享: # -*- coding:utf8 -*- import os import datet ...
- Node基础:url查询参数解析之querystring
模块概述 在nodejs中,提供了querystring这个模块,用来做url查询参数的解析,使用非常简单. 模块总共有四个方法,绝大部分时,我们只会用到 .parse(). .stringify() ...
- paper 36 :[教程] 基于GridSearch的svm参数寻优
尊重原创~~~ 转载出处:http://www.matlabsky.com/thread-12411-1-1.html 交叉验证(Cross Validation)方法思想简介http://www.m ...
- Zookeeper + Hadoop2.6 集群HA + spark1.6完整搭建与所有参数解析
废话就不多说了,直接开始啦~ 安装环境变量: 使用linx下的解压软件,解压找到里面的install 或者 ls 运行这个进行安装 yum install gcc yum install gcc-c+ ...
- argparse - 命令行选项与参数解析(转)
argparse - 命令行选项与参数解析(译)Mar 30, 2013 原文:argparse – Command line option and argument parsing 译者:young ...
- 一步一步自定义SpringMVC参数解析器
随心所欲,自定义参数解析器绑定数据. 题图:from Zoommy 干货 SpringMVC解析器用于解析request请求参数并绑定数据到Controller的入参上. 自定义一个参数解析器需要实现 ...
- /proc/sys/ 下内核参数解析
http://blog.itpub.net/15480802/viewspace-753819/ http://blog.itpub.net/15480802/viewspace-753757/ ht ...
- ThreadPoolExecutor参数解析
ThreadPoolExecutor是一个非常重要的类,用来构建带有线程池的任务执行器,通过配置不同的参数来构造具有不同规格线程池的任务执行器. 写在前面的是: 线程池和任务执行器,线程池的定义比较直 ...
随机推荐
- 把自己的代码发布到npm(npm publish)
写了代码如何发布到npm包? 示例 demo1 demo2 1.注册npm账号 在npm官网注册https://www.npmjs.com/注意邮箱要验证,会发送验证链接到你的注册邮箱,没有验证的话是 ...
- .Net MVC 身份验证
.Net身份验证主要是分为三种 Windows | Forms | Passport ,其中Froms在项目中用的最多. Windows 身份验证 Forms 验证 Passport 验证 1.Win ...
- JsonConvert
///"{'jsonParam' : " + jsonText + "}" /* Dictionary<string, object> tmp = ...
- 关于spire wb.SaveToPdf(f_pdf) excell 转为pdf 乱码问题
excell 可以合并单元格,但是在单元格内容不要用 alt+enter换行,否则就会出现乱码.
- uri,url和urn的区别以及URLEncoder
java.net.URL类不提供对标准RFC2396规定的特殊字符的转义,因此需要调用者自己对URL各组成部分进行encode.而java.net.URI则会提供转义功能.因此The recommen ...
- 来分析一个UVC的摄像头的枚举信息
使用到工具USBlyzer导出数据,但是会发现一些还有部分解析未完全.我们将借助UVCView.x86(https://files.cnblogs.com/files/libra13179/77772 ...
- eclipse中无法新建Android工程 出现问题:Plug-in org.eclipse.ajdt.ui was unable to load
转自:http://www.bubuko.com/infodetail-757338.html eclipse中打开后新建Android项目区仍无法创建,出现下列提示对话框: Plug-in org. ...
- Xpath选择、操作web元素
11月6日 xpath选择 XPath(XML Path Language)是W3C(World Wide Web Consortium)定义的用来在XML文档中选择节点的语言, 主浏览器也支持XPa ...
- centos7 Apache 2.4.6 多域名多网站配置
Apache 2.4.6 多域名多网站配置 在/etc/httpd/conf 下 编辑 vim httpd.conf 添加:ServerName 外网IP 并注释 #DocumentRoot &quo ...
- mingw编译ffmpeg 错误:Unknown option "--enable-memalign-hack"
据说mingw编译ffmpeg的话需要添加 --enable-memalign-hack 开关 但如果源码是最新版比如:ffmpeg4.0.2 的话 好像已经禁用了该开关. “我可以确认新的ffmpe ...