SVM参数解析
一、Opencv中的核函数定义(4种):
1、CvSVM::LINEAR : 线性内核,没有任何向映射至高维空间,线性区分(或回归)在原始特点空间中被完成,这是最快的选择。
2、CvSVM::POLY : 多项式内核:
3、CvSVM::RBF : 基于径向的函数,对于大多半景象都是一个较好的选择:
4、CvSVM::SIGMOID : Sigmoid函数内核:
二、svm_type:指定SVM的类型(5种):
1、CvSVM::C_SVC : C类支撑向量分类机。 n类分组 (n≥2),容许用异常值处罚因子C进行不完全分类。
2、CvSVM::NU_SVC :
类支撑向量分类机。n类似然不完全分类的分类器。参数为
庖代C(其值在区间【0,1】中,nu越大,决定计划鸿沟越腻滑)。
3、CvSVM::ONE_CLASS : 单分类器,所有的练习数据提取自同一个类里,然后SVM建树了一个分界线以分别该类在特点空间中所占区域和其它类在特点空间中所占区域。
4、CvSVM::EPS_SVR :
类支撑向量回归机。练习集中的特点向量和拟合出来的超平面的间隔须要小于p。异常值处罚因子C被采取。
5、CvSVM::NU_SVR :
类支撑向量回归机。
庖代了 p
1 #include <cv. 2 #include <highgui.h>
#include <ml.h>
#include <cxcore.h> #include <iostream>
using namespace std; int main()
{
// step 1:
//训练数据的分类标记,即4类
float labels[] = { 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0 };
CvMat labelsMat = cvMat(, , CV_32FC1, labels);
//训练数据矩阵
float trainingData[][] = { { , }, { , }, { , }, { -, }, { , }, { -, }, { , }, { , }, { , }, { , }, { , }, { , }, { , }, { , }, { , }, { , - } };
CvMat trainingDataMat = cvMat(, , CV_32FC1, trainingData); // step 2:
//训练参数设定
CvSVMParams params;
params.svm_type = CvSVM::C_SVC; //SVM类型
params.kernel_type = CvSVM::LINEAR; //核函数的类型 //SVM训练过程的终止条件, max_iter:最大迭代次数 epsilon:结果的精确性
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, , FLT_EPSILON); // step 3:
//启动训练过程
CvSVM SVM;
SVM.train(&trainingDataMat, &labelsMat, NULL, NULL, params); // step 4:
//使用训练所得模型对新样本进行分类测试
for (int i = -; i<; i++)
{
for (int j = -; j<; j++)
{
float a[] = { i, j };
CvMat sampleMat;
cvInitMatHeader(&sampleMat, , , CV_32FC1, a);
cvmSet(&sampleMat, , , i); // Set M(i,j)
cvmSet(&sampleMat, , , j); // Set M(i,j)
float response = SVM.predict(&sampleMat);
cout << response << " ";
}
cout << endl;
} // step 5:
//获取支持向量
int c = SVM.get_support_vector_count();
cout << endl;
for (int i = ; i<c; i++)
{
const float* v = SVM.get_support_vector(i);
cout << *v << " ";
}
cout << endl; system("pause");
return ;
}
三、InitMatHeader初始化矩阵头
CvMat* cvInitMatHeader( CvMat* mat, int rows, int cols, int type,void* data=NULL, int step=CV_AUTOSTEP );
mat
指针指向要被初始化的矩阵头.
rows
矩阵的行数.
cols
矩阵的列数.
type
矩阵元素类型.
data
可选的,将指向数据指针分配给矩阵头.
step
排列后的数据的整个行宽,默认状态下,使用STEP的最小可能值。也就是说默认情况下假定矩阵的行与行之间无隙.
函数 cvInitMatHeader 初始化已经分配了的 CvMat 结构. 它可以被OpenCV矩阵函数用于处理原始数据。
例如, 下面的代码计算通用数组格式存贮的数据的矩阵乘积.
计算两个矩阵的积
double a[] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };
double b[] = { 1, 5, 9,
2, 6, 10,
3, 7, 11,
4, 8, 12 };
double c[9];
CvMat Ma, Mb, Mc ;
cvInitMatHeader( &Ma, 3, 4, CV_64FC1, a );
cvInitMatHeader( &Mb, 4, 3, CV_64FC1, b );
cvInitMatHeader( &Mc, 3, 3, CV_64FC1, c );
cvMatMulAdd( &Ma, &Mb, 0, &Mc );
// c 数组存贮 a(3x4) 和 b(4x3) 矩阵的积
SVM参数解析的更多相关文章
- 写个C#命令行参数解析的小工具
最近测试工作做的比较多因此时常要创建一些控制台类型的应用程序.因为程序有不同的参数开关,需要在程序启动的时候通过命令行来给程序传递各种开关和参数.直接操作args有些不方便,所以就写了个解析参数的小工 ...
- Python--命令行参数解析Demo
写没有操作界面的程序时,最讨厌的就是参数解析问题,尤其是很多参数那种,下面是一个小Demo,拿出来与各位分享: # -*- coding:utf8 -*- import os import datet ...
- Node基础:url查询参数解析之querystring
模块概述 在nodejs中,提供了querystring这个模块,用来做url查询参数的解析,使用非常简单. 模块总共有四个方法,绝大部分时,我们只会用到 .parse(). .stringify() ...
- paper 36 :[教程] 基于GridSearch的svm参数寻优
尊重原创~~~ 转载出处:http://www.matlabsky.com/thread-12411-1-1.html 交叉验证(Cross Validation)方法思想简介http://www.m ...
- Zookeeper + Hadoop2.6 集群HA + spark1.6完整搭建与所有参数解析
废话就不多说了,直接开始啦~ 安装环境变量: 使用linx下的解压软件,解压找到里面的install 或者 ls 运行这个进行安装 yum install gcc yum install gcc-c+ ...
- argparse - 命令行选项与参数解析(转)
argparse - 命令行选项与参数解析(译)Mar 30, 2013 原文:argparse – Command line option and argument parsing 译者:young ...
- 一步一步自定义SpringMVC参数解析器
随心所欲,自定义参数解析器绑定数据. 题图:from Zoommy 干货 SpringMVC解析器用于解析request请求参数并绑定数据到Controller的入参上. 自定义一个参数解析器需要实现 ...
- /proc/sys/ 下内核参数解析
http://blog.itpub.net/15480802/viewspace-753819/ http://blog.itpub.net/15480802/viewspace-753757/ ht ...
- ThreadPoolExecutor参数解析
ThreadPoolExecutor是一个非常重要的类,用来构建带有线程池的任务执行器,通过配置不同的参数来构造具有不同规格线程池的任务执行器. 写在前面的是: 线程池和任务执行器,线程池的定义比较直 ...
随机推荐
- element-ui 带单选框的表格
效果:不只是带单选框,点击当前行单选框选中状态网上查了一些发现很多都是只能点击当前radio选中当前行,配合element-ui的单选table时发现两个的选择状态是不一致的,所以调整了一下效果 提供 ...
- tornado 和 djanjo 转义处理对比
tornado tornado默认是转义所有字符,比较安全,但有时候我们的确需要把字符当做html来解析处理,因此我们需要做些处理. 所有的模板输出都已经通过 tornado.escape.xhtml ...
- python-单元测试unittest
目录: 1.unittest.TestCase中常用的断言方法 1.1 subTest子测试 1.2 套件测试 1.3 批量测试单个用例 2. 加载器 2.1加载器协议 2.2.执行器 TestRun ...
- 用bayes公式进行机器学习的经典案例
用bayes公式进行机器学习的经典案例 从本科时候(大约9年前)刚接触Bayes公式,只知道P(A|B)×P(B) = P(AB) = P(B|A)×P(A) 到硕士期间,机器学习课上对P(B|A)P ...
- bayes公式 - 再从零开始理解
bayes公式与机器学习 - 再从零开始理解 从本科时候(大约9年前)刚接触Bayes公式,只知道P(A|B)×P(B) = P(AB) = P(B|A)×P(A) 到硕士期间,机器学习课上对P(B| ...
- Faster RCNN原理分析(二):Region Proposal Networks详解
Faster RCNN原理分析(二):Region Proposal Networks详解 http://lib.csdn.net/article/deeplearning/61641 0814: A ...
- 04.给linux用户添加sudo权限
linux给用户添加sudo权限: 有时候,linux下面运行sudo命令,会提示类似: xxxis not in the sudoers file. This incident will be r ...
- centos7下安装python3.7
记录在2018年最后一个工作日: Linux环境坑爹得要死,环境本身有python2和python3.7两个版本:安装django2的时候,发现默认是python2:把python软连接到python ...
- 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...
- 爬虫--requests模块学习
requests模块 - 基于如下5点展开requests模块的学习 什么是requests模块 requests模块是python中原生的基于网络请求的模块,其主要作用是用来模拟浏览器发起请求.功能 ...