题目传送门:洛谷P5089

题意简述:

一张 \(n \times m\) 的表格,有一些格子有标记,另外一些格子没有标记。

如果 \((r_1,c_1),(r_1,c_2),(r_2,c_1)\) (满足 \(r_1\ne r_2,c_1\ne c_2\))都有标记,那么可以不花费任何代价使得 \((r_2,c_2)\) 也有标记。

你也可以花费 \(1\) 的代价使得任意一个格子有标记。

问使得所有格子都有标记的最小花费

题解:

比赛时这题我想了很久,猜了一个奇怪的结论交上去就对了。

这里贴一下官方题解的证明方法:

建立一张二分图,左边的点代表 \(n\) 个周期,右边的点代表 \(m\) 个主族。

把每一个元素 \((x,y)\) 看作一条边,连接第 \(x\) 周期和第 \(y\) 主族。

那么我们的目标是是这个二分图变成完全二分图,也就是有 \(n \times m\) 条边。

考虑核聚变的条件:
\((r_1, c_1) + (r_1, c_2) + (r_2, c_1) \to (r_2, c_2)\)。

可以发现这个过程是不改变二分图中的连通分量的个数的。

而反过来,对于二分图中的某一个连通分量,也可以通过核聚变的方式,把这个连通分量变成“完全”的,也就是连接左右两部分的所有边都存在。

那么答案就是将这个二分图添加尽量少的边使得它联通的边数。

也就是:\(\text{连通分量的个数}-1\)。

思路很巧妙,代码并不难写:

 #include<bits/stdc++.h>
int n,m,q,x,y,S;
int v[];
int h[],nxt[],to[],tot;
inline void ins(int x,int y){nxt[++tot]=h[x];to[tot]=y;h[x]=tot;}
void D(int u){
for(int i=h[u];i;i=nxt[i])if(!v[to[i]])
v[to[i]]=, D(to[i]);
}
int main(){
scanf("%d%d%d",&n,&m,&q);
while(q--) scanf("%d%d",&x,&y), ins(x,n+y), ins(n+y,x);
for(int i=;i<=n+m;++i) if(!v[i]) ++S, v[i]=, D(i);
printf("%d",S-);
return ;
}

洛谷 P5089: CodeForces #500 (Div. 1) B / 1012B : Chemical table的更多相关文章

  1. Codeforces 1012B Chemical table (思维+二分图)

    <题目链接> 题目大意:给定一个n*m的矩阵网格,向其中加点,对于一个组成矩形的四个点中如果有三个点中有元素,那么第四个点中会自动产生新的元素.问你最少再加多少个点能够填满这个网格.解题分 ...

  2. Codeforces Round #500 (Div. 2) [based on EJOI]

    Codeforces Round #500 (Div. 2) [based on EJOI] https://codeforces.com/contest/1013 A #include<bit ...

  3. Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化

    https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...

  4. CodeForces 79D 【Password】,洛谷P3943 【星空】

    其实我做的是洛谷的P3943,但是听说fstqwq窃题...... 题目描述: 小 C 拿来了一长串星型小灯泡,假装是星星,递给小 F,想让小 F 开心一点.不过,有 着强迫症的小 F 发现,这串一共 ...

  5. Codeforces Round 500 (Div 2) Solution

    从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...

  6. 洛谷八月月赛Round1凄惨记

    个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...

  7. 洛谷OJ P1196 银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

  8. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  9. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

随机推荐

  1. Book Review 《构建之法》

    -首先浏览了一遍<构建之法>这本书的前言,其中通过客观的描述性介绍了学生与学习.老师与教学.以及学习的环境.方法等等.但是对于书中前言包括正文都频繁出现的一个词语 “文档” 深表疑问.何为 ...

  2. 第二个Sprint冲刺第三天(燃尽图)

  3. [阮一峰]Linux 守护进程的启动方法

    "守护进程"(daemon)就是一直在后台运行的进程(daemon). 本文介绍如何将一个 Web 应用,启动为守护进程. 一.问题的由来 Web应用写好后,下一件事就是启动,让它 ...

  4. String js删除字符串的最后一个字符三种方法

    字符串 var basic = "abc,def,ghi,"; 第一种 basic = basic.substr(0, basic.length - 1); 第二种 basic = ...

  5. Python的文件读写

    目录 读文件 操作文件 读取内容 面试题的例子 写文件 操作模式 指针操作 字符编码 读文件 操作文件 打开一个文件用open()方法(open()返回一个文件对象,它是可迭代的): 文件使用完毕后必 ...

  6. Pycharm+Python+PyQt5使用

    https://www.cnblogs.com/dalanjing/p/6978373.html

  7. Vasya and Multisets CodeForces - 1051C(英语限制了我的想象力)

    题意: 对输入的每个数都进行分配到两个多重集中,问分配完以后 每个多重集中的个数为1的元素是否相等  相等则输出一个分配方式, 不想等为NO 解析: 三种情况 1.原数列中个数为1 的数的个数为偶数 ...

  8. Minimum Sum LCM UVA - 10791(分解质因子)

    对于一个数n 设它有两个不是互质的因子a和b   即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...

  9. MT【188】一个正切余切有关的恒等式

    (2017北大特优)求$9\tan 10^\circ+2\tan 20^\circ+4\tan 40^\circ-\tan 80^\circ=$_____ A.$0$ B.$\dfrac{\sqrt ...

  10. 【题解】 bzoj1191: [HNOI2006]超级英雄Hero (二分图)

    bzoj1191,懒得复制,戳我戳我 Solution: 二分图最大匹配板子题 Attention: 注意题干中的一句话 只有当选手正确回答一道题后,才能进入下一题,否则就被淘汰. Code: //I ...