2018 ICPC 沈阳网络赛

Call of Accepted

题目描述:求一个算式的最大值与最小值。

solution
按普通算式计算方法做,只不过要同时记住最大值和最小值而已。

Convex Hull

题目描述:定义函数\(gay(x)\),若\(x\)是某个非\(1\)的数的平方的倍数,则\(gay(x)=0\),否则\(gay(x)=x^2\),求\(\sum_{num=1}^{n} ( \sum_{i=1}^{num} gay(x) ) mod p\)

solution
\[\sum_{num=1}^{n} ( \sum_{i=1}^{num} gay(x) ) mod p\]
\[(n+1)\sum_{i=1}^{n} gay(i) - \sum_{i=1}^{n} i \cdot gay(i)\]
然后容斥就可以算出答案,用上莫比乌斯函数。

时间复杂度:\(O(\sqrt{n}\))

D. Made In Heaven

题目描述:判断图的\(k\)短路是否不超过\(T\).

solution
模板题。

F. Fantastic Graph

题目描述:给定一个二分图,现在选择一些边,使得最终所有点的度都在\([L, R]\),判断是否可行。

solution
上下界网络流的模板题。

G. Spare Tire

题目描述:定义\(a_n\),求\(\sum_{i=1}^{n} [gcd(m, i)=1] a_i\)
\[
a_n =\left\{\begin{matrix}
0, & n=0\\
2, & n=1\\
\frac{3a_{n-1} - a_{n-2}}{2}+n+1 & n>1
\end{matrix}\right.
\]

solution
找规律可得\(a_n=n(n+1)\),
\[\sum_{i=1}^{n} [gcd(m, i)=1] a_i\]
\[=\sum_{d|m} \mu(d) \sum_{x=1}^{n/d} (xd)(xd+1)\]
\[=\sum_{d|m} \mu(d)[d^2 \sum_{x=1}^{n/d} x^2 + d \sum_{x=1}^{n/d} x]\]

所以可以对\(m\)分解质因数,穷举\(m\)所有非平方倍数的因子(因为只有这些因子对应的\(\mu\)不为\(0\)),后面的直接求和即可。

时间复杂度:\(O(能过)\)

I. Lattice's basics in digital electronics

solution
字典树+模拟。

J. Ka Chang

题目描述:有一棵有根树,有两种操作:1.给深度为\(L\)的点加\(x\) 2.求一棵子树的和。

solution
树分块。求树的\(dfs\)序,将\(dfs\)序分成\(\sqrt{n}\)块,算出每一块每种高度的个数,对于操作1,每一块的答案增加\(x\)乘于高度为\(L\)的个数。对于操作2,求的是\(dfs\)中连续一段区间的和,那就是很普通的分块计算。

时间复杂度:\(O(n\sqrt{n})\)

K. Supreme Number

题目描述:如果一个素数的非空子序列也是素数(或者\(1\)),那么这个素数叫做超级素数,给定一个\(n\),求不大于\(n\)的最大超级素数。

solution
显然这样的数不多,而且比较小,所以可以先暴力求出所有超级素数,然后询问的时候再二分查找。

时间复杂度:\(O(能过)\)

2018 ICPC 沈阳网络赛的更多相关文章

  1. 2018 ICPC 沈阳网络赛预赛 Supreme Number(找规律)

    [传送门]https://nanti.jisuanke.com/t/31452 [题目大意]:给定一个数字(最大可达10100),现在要求不超过它的最大超级质数.超级质数定义:对于一个数,把它看成数字 ...

  2. 2018 ICPC 徐州网络赛

    2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...

  3. 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat

    题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...

  4. 2017 icpc 沈阳网络赛

    cable cable cable Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. 2018 ICPC南京网络赛 L Magical Girl Haze 题解

    大致题意: 给定一个n个点m条边的图,在可以把路径上至多k条边的权值变为0的情况下,求S到T的最短路. 数据规模: N≤100000,M≤200000,K≤10 建一个立体的图,有k层,每一层是一份原 ...

  6. 2018 icpc 青岛网络赛 J.Press the Button

    Press the Button Time Limit: 1 Second      Memory Limit: 131072 KB BaoBao and DreamGrid are playing ...

  7. 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)

    BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...

  8. 2018 icpc 徐州网络赛 F Features Track

    这个题,我也没想过我这样直接就过了 #include<bits/stdc++.h> using namespace std; ; typedef pair<int,int> p ...

  9. 【2018 ICPC焦作网络赛 K】Transport Ship(多重背包二进制优化)

    There are N different kinds of transport ships on the port. The ith kind of ship can carry the weigh ...

随机推荐

  1. Beta冲刺——day7

    Beta冲刺--day7 作业链接 Beta冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602134 王龙 ...

  2. Docker的安装和使用说明——Docker for Windows

    一.Docker安装 1.1官方方法 官方下载页面:http://www.docker.com/products/docker#/windows 官方下载地址:https://download.doc ...

  3. pgm2

    MRF 笔记 我们先讨论引入 MRF 的必要性.经典的例子就是四个 r.v.s 连成一个正方形的结构的时候,我们没法通过 BN 获得给定对角线两个 r.v.s 而剩下的条件独立(不都是 d-sep), ...

  4. c++11 强类型枚举

    c++11 强类型枚举 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> #inclu ...

  5. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  6. sql知识收集

    在SQL Server里面有top关键字可以很方便的取出前N条记录,但是Oracle里面却没有top的使用,类似实现取出前N条记录的简单方法如下: 方法1:利用ROW_NUMBER函数 取出前5条记录 ...

  7. Openstack运维指南文档整理

    非常全面的运维指南整理http://zjzone.cc/index.php/2017/07/31/openstack-yun-wei-wen-dang-zheng-li/

  8. kubernetes配置secret拉取私仓镜像

    2017.05.10 19:48* 字数 390 阅读 5216评论 0喜欢 8 对于公司内部的项目, 我们不可能使用公有开放的镜像仓库, 一般情况可能会花钱买docker私仓服务, 或者说自己在服务 ...

  9. ubuntu 指定用户执行脚本

    方法 创建可执行脚本 以下以脚本名称为superset.sh为例,具体的脚本内容大家可以自己发挥. cd ~ vi superset.sh # 脚本内容自己写好后保存 修改脚本权限 sudo chmo ...

  10. OpenStack 认证服务 KeyStone 服务注册(五)

    创建服务实体和API端点 创建服务 openstack service create --name keystone --description "OpenStack Identity&qu ...