根据欧拉函数的定义式可知,可以先算出a[l]*a[l+1]*...*a[r]的值,然后枚举所有存在的质因子*(p-1)/p。

发现这里区间中一个质因子只要计算一次,所以指计算“上一个同色点在区间外”的数。记录pre就是二维数点问题了,套路地用主席树即可。

被卡常。别的OJ过了BZOJ过不了,优化常数后别的OJ速度快一倍BZOJ还是过不了。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,M=,S=,mod=1e6+;
bool b[S];
int n,Q,mx,nd,l,r,tot,ans,idx[S],lst[S],rt[N],a[N],sm[N],p[S],v[M],ls[M],rs[M]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int inv(int x){ return ksm(x,mod-); } void init(int n){
rep(i,,n){
if (!b[i]) p[++tot]=i,idx[i]=tot;
for (int j=; j<=tot && p[j]*i<=n; j++){
b[p[j]*i]=;
if (i%p[j]==) break;
}
}
} void ins(int &x,int y,int L,int R,int pos,int k){
x=++nd; v[x]=v[y]; ls[x]=ls[y]; rs[x]=rs[y];
if (L==R){ v[x]=1ll*v[x]*(k-)%mod*inv(k)%mod; return; }
int mid=(L+R)>>;
if (pos<=mid) ins(ls[x],ls[y],L,mid,pos,k);
else ins(rs[x],rs[y],mid+,R,pos,k);
v[x]=1ll*v[ls[x]]*v[rs[x]]%mod;
} int que(int x,int y,int L,int R,int pos){
if (!x && !y) return ;
if (L==R) return 1ll*v[y]*inv(v[x])%mod;
int mid=(L+R)>>;
if (pos<=mid) return que(ls[x],ls[y],L,mid,pos);
else return 1ll*v[ls[y]]*inv(v[ls[x]])%mod*que(rs[x],rs[y],mid+,R,pos)%mod;
} int main(){
scanf("%d%d",&n,&Q); sm[]=; v[]=;
rep(i,,n) scanf("%d",&a[i]),sm[i]=1ll*sm[i-]*a[i]%mod,mx=max(mx,a[i]);
init(mx);
rep(i,,n){
rt[i]=rt[i-]; int t=a[i];
for (int j=; j<=tot && p[j]*p[j]<=t; j++)
if (t%p[j]==){
ins(rt[i],rt[i],,n,lst[j],p[j]); lst[j]=i;
while (t%p[j]==) t/=p[j];
}
if (t>) ins(rt[i],rt[i],,n,lst[idx[t]],t),lst[idx[t]]=i;
}
rep(i,,Q){
scanf("%d%d",&l,&r); l^=ans; r^=ans;
printf("%d\n",ans=(1ll*sm[r]*inv(sm[l-])%mod*que(rt[l-],rt[r],,n,l-)%mod));
}
return ;
}

[BZOJ4026]dC Loves Number Theory(线段树)的更多相关文章

  1. [bzoj4026]dC Loves Number Theory_主席树_质因数分解_欧拉函数

    dC Loves Number Theory 题目大意:dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问 ...

  2. [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树

    链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...

  3. BZOJ4026: dC Loves Number Theory

    Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所 ...

  4. bzoj 4026 dC Loves Number Theory 主席树+欧拉函数

    题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代 ...

  5. BZOJ 4026 dC Loves Number Theory (主席树+数论+欧拉函数)

    题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[ ...

  6. 【BZOJ4026】dC Loves Number Theory 分解质因数+主席树

    [BZOJ4026]dC Loves Number Theory Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.    给 ...

  7. 【bzoj4026】dC Loves Number Theory 可持久化线段树

    题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.  给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n ...

  8. BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学

    Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...

  9. bzoj 4026 dC Loves Number Theory

    把我写吐了 太弱了 首先按照欧拉函数性质 我只需要统计区间不同质数个数就好了 一眼主席树 其次我被卡了分解质因数这里 可以通过质数筛时就建边解决 不够灵性啊,不知道如何改 #include<bi ...

随机推荐

  1. NYOJ 138 找球号(二) (哈希)

    题目链接 描述 在某一国度里流行着一种游戏.游戏规则为:现有一堆球中,每个球上都有一个整数编号i(0<=i<=100000000),编号可重复,还有一个空箱子,现在有两种动作:一种是&qu ...

  2. 面试中关于Java虚拟机(jvm)的问题看这篇就够了

    最近看书的过程中整理了一些面试题,面试题以及答案都在我的文章中有所提到,希望你能在以问题为导向的过程中掌握虚拟机的核心知识.面试毕竟是面试,核心知识我们还是要掌握的,加油~~~ 下面是按jvm虚拟机知 ...

  3. route add提示: "SIOCADDRT: No such process

    解决方法如下: 原因: There are multiple known causes for this error: - You attempted to set a route specific ...

  4. spring中的任务调度Quartz

    Spring 整合 Quartz 任务调度 主要有两种方式. Quartz的官网:http://www.quartz-scheduler.org/ 这两种只是一些配置文件简单配置就OK了,但是根本无法 ...

  5. Tutorial 1: Serialization

    转载自:http://www.django-rest-framework.org/tutorial/1-serialization/#tutorial-1-serialization Tutorial ...

  6. Windows 和Linux 误删除后的恢复

    ext文件系统上删除文件,可以恢复:extundelete; windows 恢复删除文件: final data v2.0汉化版 和 easyrecovery

  7. Homestead在windows7 下的搭建

    遇到的问题有 1.Homestead 的版本问题,教程git版本是 v5,最新是v7的,如果用最新,就要求vagrant的版本是 2.0的: 2.启动homestead后,出现 No input fi ...

  8. MVC开发模式与javaEE三层架构

    1.MVC开发模式 1. M:Model,模型.JavaBean        * 完成具体的业务操作,如:查询数据库,封装对象2. V:View,视图.JSP        * 展示数据3. C:C ...

  9. SRILM的安装方法

    官网 网上搜的安装教程:SRILM的安装方法 最近做的一个项目要用到语言模型,在网上找了一些开源的工具包试了一下.废话不多说,下面直接介绍一下SRILM的安装方法. 我实在ubuntu14.04底下使 ...

  10. 【企业通讯录app番外篇】怎么样创建服务端?

    本文将指导大家如何去创建企业通讯录app的服务端 除了获取图片,客户端与服务端唯一的交互就是获取最新数据,如果该用户不能获取数据(用户名密码错误.用户离职被删)则返回空. 1:典型的交互流程如下: 用 ...