重写函数

我们使用torch实现我们自己的ReQU模块。在实现一个新的layer之前,我们必须了解,我们并不是重写forward和backward方法,而是重写里面调用的其它方法。

1)又一次updataOutput方法。从而实现forward方法。

2)重写updataGradInput方法实现部分backward,计算loss函数相对于layer输入的导数,dloss/dx, 依据loss函数相对于layer输出的导数dloss:



3)重写accGradParameters方法实现backward其余部分,计算loss函数相对于权重的导数。

ReQU模块

Rectified Quadratic Unit(ReQU)与sigmoid和ReLU非常类似,这个模块作用于每个元素上:



用矩阵的方式来表达就是:



括号中假设是trues就返回1s,假设是falses就返回0s,中间的符号代表元素级别的乘积

重写updateOutput和updateGradInput模块

在重写模块之前,我们先推导公式,dloss/dx=dloss/dz.*dz/dx=dloss/dz.*2*(x>0).*x

我们首先重写updateOutput函数。这个函数主要计算输入为input时的输出:

function ReQU:updateOutput(input)
self.output:resizeAs(input):copy(input)
self.output:gt(input,0):cmul(input):cmul(input)
return self.output
end

当中self.output:gt(input,0):cmul(input):cmul(input)这一步比較重要,self.output:gt(input,0)目的把input里面值与0比較,大于0设为1,否则设为0,然后通过两次cmul(input),计算得到正确的输出。

我们然后重写updateGradInput函数。这个函数的目的是计算loss函数相对于输入的导数:

function ReQU:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
self.gradInput:cmul(self.gradInput:gt(input,0):mul(2):cmul(input),gradOutput)
return self.gradInput
end

输入是input和gradOutput。通过我们上面推到的公式。通过代码:

self.gradInput:cmul(self.gradInput:gt(input,0):mul(2):cmul(input),gradOutput)计算得到

构建一个简单神经网络

我们构建一个简单的神经网络,用来训练iris.data.csv里面的数据。我们定义一个function叫做create_model,创建model以及criterion。这个model包含:

Input——>linear——>non-linearity——>linear——>log softmax——>cross-entropy loss

Input一共同拥有4个维度。non-linearity选择使用sigmoid或者ReQU。以下是model核心代码:

local model = nn.Sequential()
model:add(nn.Linear(n_inputs, embedding_dim))
if opt.nonlinearity_type == 'requ' then
model:add(nn.ReQU())
elseif opt.nonlinearity_type == 'sigmoid' then
model:add(nn.Sigmoid())
else
error('undefined nonlinearity_type ' .. tostring(opt.nonlinearity_type))
end
model:add(nn.Linear(embedding_dim, n_classes))
local criterion = nn.ClassNLLCriterion()

測试gradient

我们最后得到的cost function为E(w1,…,wn),那么梯度就是分别针对wi求导数,公式例如以下:



所以当计算梯度的时候,我们须要计算所有的偏导数。

我们能够近似的计算偏导数例如以下:



我们使用这个思想来測试我们的神经网络。我们把整个神经网络看成一个方程E(x;w)。然后随机生成x和w,然后利用上述公式预计梯度值,然后我们也使用公式求得觉得正确的梯度值。假设这两个值类似,那么就能够推断我们写的“ReQU”是正确的。推断公式例如以下:



gi是使用两种方式求得的梯度,求得的值假设和ϵ的度相近。那么觉得求得的梯度是正确的。

代码细节例如以下:

1) 求正确的梯度:

-- returns dloss(params)/dparams
local g = function(x)
if x ~= parameters then
parameters:copy(x)
end
gradParameters:zero()
local outputs = model:forward(data.inputs)
criterion:forward(outputs, data.targets)
model:backward(data.inputs, criterion:backward(outputs, data.targets))
return gradParameters
end

2) 求近似的梯度:

-- compute numeric approximations to gradient
local eps = eps or 1e-4
local grad_est = torch.DoubleTensor(grad:size())
for i = 1, grad:size(1) do
x[i] = x[i] + eps
local loss_a = f(x)
x[i] = x[i] - 2*eps
local loss_b = f(x)
x[i] = x[i] + eps
grad_est[i] = (loss_a-loss_b)/(2*eps)
end

3) 计算两个方法求得的梯度的差:

-- computes (symmetric) relative error of gradient
local diff = torch.norm(grad - grad_est) / torch.norm(grad + grad_est)

測试Jacobian

这里我们測试dz/dx计算的是否正确,我们计算Jacobian矩阵,我们假设有m个样本,每个样本为n维,那么这个Jacobian矩阵就是mxn的矩阵:



第i行是关于第i个样本input的梯度,当中fi表示输出output。我们怎样获得Jacobian矩阵呢?这个矩阵是在backward的updateGradInput中隐性计算的:



为了获得Jacobian矩阵。我们须要构造我们gradOutput vector,使当中一个为1,其余的所有为0,这样就能获得Jacobian一整行,torch代码例如以下:

local z = module:forward(x):clone()
local jac = torch.DoubleTensor(z:size(1), x:size(1))
-- get true Jacobian, ROW BY ROW
local one_hot = torch.zeros(z:size())
for i = 1, z:size(1) do
one_hot[i] = 1
jac[i]:copy(module:backward(x, one_hot))
one_hot[i] = 0
end

我们使用与上一节类似的方法计算近似值:



Torch代码例如以下:

-- compute finite-differences Jacobian, COLUMN BY COLUMN
local jac_est = torch.DoubleTensor(z:size(1), x:size(1))
for i = 1, x:size(1) do
x[i] = x[i] + eps
z_offset = module:forward(x):clone()
x[i] = x[i] - 2*eps
z_offset=z_offset-module:forward(x)
x[i] = x[i] + eps
jac_est[{{},i}]:copy(z_offset):div(2*eps)
end
-- computes (symmetric) relative error of gradient
local abs_diff = (jac - jac_est):abs()

Torch实现ReQU,和梯度验证的更多相关文章

  1. 《神经网络的梯度推导与代码验证》之CNN前向和反向传播过程的代码验证

    在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所 ...

  2. Pytorch实现UNet例子学习

    参考:https://github.com/milesial/Pytorch-UNet 实现的是二值汽车图像语义分割,包括 dense CRF 后处理. 使用python3,我的环境是python3. ...

  3. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  4. Pytorch 之 backward

    首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dz/dx=dz/dy × dy/dx 中 ...

  5. pytorch adam 源码 关于优化函数的调整 optimizer 调参 重点

    关于优化函数的调整拆下包:https://ptorch.com/docs/1/optim class torch.optim.Optimizer(params, defaults)所有优化的基类. 参 ...

  6. PyTorch基础——词向量(Word Vector)技术

    一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现 ...

  7. [PyTorch入门之60分钟入门闪击战]之神经网络

    神经网络 来源于这里. 神经网络可以使用torch.nn包构建. 现在你对autograd已经有了初步的了解,nn依赖于autograd定义模型并区分它们.一个nn.Module包含了层(layers ...

  8. 多层感知机及其BP算法(Multi-Layer Perception)

    Deep Learning 近年来在各个领域都取得了 state-of-the-art 的效果,对于原始未加工且单独不可解释的特征尤为有效,传统的方法依赖手工选取特征,而 Neural Network ...

  9. (六)6.4 Neurons Networks Autoencoders and Sparsity

    BP算法是适合监督学习的,因为要计算损失函数,计算时y值又是必不可少的,现在假设有一系列的无标签train data:  ,其中 ,autoencoders是一种无监督学习算法,它使用了本身作为标签以 ...

随机推荐

  1. Junit初级篇

    @Test介绍 @Test是我们在写测试脚本时最常用到的,大部分情况下如果没用这个注解,一个方法就不能成为测试用例.如下代码是一个最普通的测试脚本: import org.junit.Assert; ...

  2. js 的push方法

    JavaScript push() 方法 定义和用法 push() 方法可向数组的末尾添加一个或多个元素,并返回新的长度. 语法 arrayObject.push(newelement1,newele ...

  3. 为Hadoop创建JAR包文件Creating a JAR for Hadoop

    We've seen the internals of MapReduce in the last post. Now we can make a little change to the WordC ...

  4. iOS: 偏好设置的详解和使用

    偏好设置的详解: 用途:主要用来存储用户系统的设备信息,但有的时候也可以在程序的任何地方用来存储数据,作为全局数据来访问,例如视图切换需要进行登录时. 偏好设置的写入: •很多iOS应用都支持偏好设置 ...

  5. Dockerfile命令

    Dockerfile分基础镜像信息.维护者信息.镜像操作指令.容器启动时执行指令 FROM 镜像名:标签 第一条指令必须时FROM MAINTAINER 维护者信息 RUN command或者RUN ...

  6. PHP curl 抓取AJAX异步内容

    其实抓ajax异步内容的页面和抓普通的页面区别不大.ajax只不过是做了一次异步的http请求,只要使用firebug类似的工具,找到请求的后端服务url和传值的参数,然后对该url传递参数进行抓取即 ...

  7. Virtualbox中Linux添加新磁盘并创建分区

    原文:https://www.linuxidc.com/Linux/2017-01/139616.htm ----------------------------------------------- ...

  8. Install Visual Studio Tools for Apache Cordova

    Install Visual Studio Tools for Apache Cordova Visual Studio 2013   This article refers to the Visua ...

  9. xcode 模拟器,文档,离线安装

    一:xcode上的模拟器,文档,在下载时,通过apple.com下载的速度太慢了,所以我们下载之后,做一下备份,离线安装还原就行了! 二:模拟器安装 目录:/Users/<user name&g ...

  10. UNIX网络编程读书笔记:原始套接口

    概述 应用程序可以绕过传输层而直接使用IPv4和IPv6,这称为原始套接口(raw socket).http://www.cnblogs.com/nufangrensheng/p/3583435.ht ...