3.2. Grid Search: Searching for estimator parameters

Parameters that are not directly learnt within estimators can be set by searching a parameter space for the best Cross-validation: evaluating estimator performance score. Typical examples include Ckernel and gamma for Support Vector Classifier, alpha for Lasso, etc.

Any parameter provided when constructing an estimator may be optimized in this manner. Specifically, to find the names and current values for all parameters for a given estimator, use:

estimator.get_params()

Such parameters are often referred to as hyperparameters (particularly in Bayesian learning), distinguishing them from the parameters optimised in a machine learning procedure.

A search consists of:

  • an estimator (regressor or classifier such as sklearn.svm.SVC());
  • a parameter space;
  • a method for searching or sampling candidates;
  • a cross-validation scheme; and
  • score function.

Some models allow for specialized, efficient parameter search strategies, outlined below. Two generic approaches to sampling search candidates are provided in scikit-learn: for given values, GridSearchCV exhaustively considers all parameter combinations, while RandomizedSearchCV can sample a given number of candidates from a parameter space with a specified distribution. After describing these tools we detail best practice applicable to both approaches.

3.2.1. Exhaustive Grid Search

The grid search provided by GridSearchCV exhaustively generates candidates from a grid of parameter values specified with the param_grid parameter. For instance, the following param_grid:

param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
]

specifies that two grids should be explored: one with a linear kernel and C values in [1, 10, 100, 1000], and the second one with an RBF kernel, and the cross-product of C values ranging in [1, 10, 100, 1000] and gamma values in [0.001, 0.0001].

The GridSearchCV instance implements the usual estimator API: when “fitting” it on a dataset all the possible combinations of parameter values are evaluated and the best combination is retained.

Examples:

3.2.2. Randomized Parameter Optimization

While using a grid of parameter settings is currently the most widely used method for parameter optimization, other search methods have more favourable properties. RandomizedSearchCV implements a randomized search over parameters, where each setting is sampled from a distribution over possible parameter values. This has two main benefits over an exhaustive search:

  • A budget can be chosen independent of the number of parameters and possible values.
  • Adding parameters that do not influence the performance does not decrease efficiency.

Specifying how parameters should be sampled is done using a dictionary, very similar to specifying parameters forGridSearchCV. Additionally, a computation budget, being the number of sampled candidates or sampling iterations, is specified using the n_iter parameter. For each parameter, either a distribution over possible values or a list of discrete choices (which will be sampled uniformly) can be specified:

[{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['auto', None]}]

This example uses the scipy.stats module, which contains many useful distributions for sampling parameters, such as expon,gammauniform or randint. In principle, any function can be passed that provides a rvs (random variate sample) method to sample a value. A call to the rvs function should provide independent random samples from possible parameter values on consecutive calls.

Warning

The distributions in scipy.stats do not allow specifying a random state. Instead, they use the global numpy random state, that can be seeded via np.random.seed or set using np.random.set_state.

For continuous parameters, such as C above, it is important to specify a continuous distribution to take full advantage of the randomization. This way, increasing n_iter will always lead to a finer search.

Examples:

References:

  • Bergstra, J. and Bengio, Y., Random search for hyper-parameter optimization, The Journal of Machine Learning Research (2012)

3.2.3. Tips for parameter search

3.2.3.1. Specifying an objective metric

By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are thesklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regression. For some applications, other scoring functions are better suited (for example in unbalanced classification, the accuracy score is often uninformative). An alternative scoring function can be specified via the scoring parameter to GridSearchCV,RandomizedSearchCV and many of the specialized cross-validation tools described below. See The scoring parameter: defining model evaluation rules for more details.

3.2.3.2. Composite estimators and parameter spaces

Pipeline: chaining estimators describes building composite estimators whose parameter space can be searched with these tools.

3.2.3.3. Model selection: development and evaluation

Model selection by evaluating various parameter settings can be seen as a way to use the labeled data to “train” the parameters of the grid.

When evaluating the resulting model it is important to do it on held-out samples that were not seen during the grid search process: it is recommended to split the data into a development set (to be fed to the GridSearchCV instance) and anevaluation set to compute performance metrics.

This can be done by using the cross_validation.train_test_split utility function.

3.2.3.4. Parallelism

GridSearchCV and RandomizedSearchCV evaluate each parameter setting independently. Computations can be run in parallel if your OS supports it, by using the keyword n_jobs=-1. See function signature for more details.

3.2.3.5. Robustness to failure

Some parameter settings may result in a failure to fit one or more folds of the data. By default, this will cause the entire search to fail, even if some parameter settings could be fully evaluated. Setting error_score=0 (or =np.NaN) will make the procedure robust to such failure, issuing a warning and setting the score for that fold to 0 (or NaN), but completing the search.

3.2.4. Alternatives to brute force parameter search

3.2.4.1. Model specific cross-validation

Some models can fit data for a range of value of some parameter almost as efficiently as fitting the estimator for a single value of the parameter. This feature can be leveraged to perform a more efficient cross-validation used for model selection of this parameter.

The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In this case we say that we compute the regularization path of the estimator.

Here is the list of such models:

linear_model.ElasticNetCV([l1_ratio, eps, ...]) Elastic Net model with iterative fitting along a regularization path
linear_model.LarsCV([fit_intercept, ...]) Cross-validated Least Angle Regression model
linear_model.LassoCV([eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path
linear_model.LassoLarsCV([fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm
linear_model.LogisticRegressionCV([Cs, ...]) Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.MultiTaskElasticNetCV([...]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.MultiTaskLassoCV([eps, ...]) Multi-task L1/L2 Lasso with built-in cross-validation.
linear_model.OrthogonalMatchingPursuitCV([...]) Cross-validated Orthogonal Matching Pursuit model (OMP)
linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.RidgeClassifierCV([alphas, ...]) Ridge classifier with built-in cross-validation.

3.2.4.2. Information Criterion

Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization parameter by computing a single regularization path (instead of several when using cross-validation).

Here is the list of models benefitting from the Aikike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) for automated model selection:

linear_model.LassoLarsIC([criterion, ...]) Lasso model fit with Lars using BIC or AIC for model selection

3.2.4.3. Out of Bag Estimates

When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement, part of the training set remains unused. For each classifier in the ensemble, a different part of the training set is left out.

This left out portion can be used to estimate the generalization error without having to rely on a separate validation set. This estimate comes “for free” as no additional data is needed and can be used for model selection.

This is currently implemented in the following classes:

ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomForestRegressor([...]) A random forest regressor.
ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier([loss, ...]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor([loss, ...]) Gradient Boosting for regression.

3.2. Grid Search: Searching for estimator parameters的更多相关文章

  1. scikit-learn:3.2. Grid Search: Searching for estimator parameters

    參考:http://scikit-learn.org/stable/modules/grid_search.html GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合).寻找最好的 ...

  2. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

  3. Grid Search学习

    转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...

  4. Comparing randomized search and grid search for hyperparameter estimation

    Comparing randomized search and grid search for hyperparameter estimation Compare randomized search ...

  5. Grid search in the tidyverse

    @drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...

  6. Extjs4.2 Grid搜索Ext.ux.grid.feature.Searching的使用

    背景 Extjs4.2 默认提供的Search搜索,功能还是非常强大的,只是对于国内的用户来说,还是不习惯在每列里面单击好几下再筛选,于是相当当初2.2里面的搜索,更加的实用点,于是在4.2里面实现. ...

  7. grid search 超参数寻优

    http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和  RandomizedSearchC ...

  8. Ext.ux.grid.feature.Searching 解析查询参数,动态产生linq lambda表达式

    上篇文章中http://www.cnblogs.com/qidian10/p/3209439.html我们介绍了如何使用Grid的查询组建,而且将查询的参数传递到了后台. 那么我们后台如何介绍参数,并 ...

  9. [转载]Grid Search

    [转载]Grid Search 初学机器学习,之前的模型都是手动调参的,效果一般.同学和我说他用了一个叫grid search的方法.可以实现自动调参,顿时感觉非常高级.吃饭的时候想调参的话最差不过也 ...

随机推荐

  1. 打开WEBBROWSER的选中文件路径

      uses CommCtrl, httpApp, ShellApi; {  GetWebPath(WebBrowser1); } function GetWebPath(web: TWebBrows ...

  2. C#系列之值类型和引用类型

    前言 这几天一直在思考这章讨论什么, 在上一章讨论string的时候牵涉到引用类型,那么我们这一章讨论讨论一下,值类型和引用类型. 值类型和引用类型,它们的区别来源于传值方式.有人会认为值类型就存在栈 ...

  3. js原型继承

    原型链: Object(构造函数) object(类型(对象)) var o = {}; alert(typeof o); //结果是object alert(typeof Object); //结果 ...

  4. ES6数组去重

    今天五一,在出去玩之前赶紧写篇博客,时刻不要忘记学习^_^!! 提到数组去重,想必大家都不陌生,会的同学可能噼里啪啦写出好几个,下面来看看之前常见的去重代码: 'use strict'; var ar ...

  5. 点击其它地方隐藏div/事件冒泡/sweet-alert阻止冒泡

    点击document时把div隐藏,但点击div时阻止点击事件冒泡到document,从而实现“点击文档其它地方隐藏div,点击div本身不隐藏”.js代码如下:$("#div") ...

  6. Android 巧妙实现图片和文字上下布局或者左右布局

    最近去了一家新公司,然后开始做新的项目,看其代码发现了一个很巧妙的方法来实现图片在上面文字在下面的布局方式.只需要一个控件——RadioButton. 布局文件很简单,用来展示RadioBUtton的 ...

  7. install erlang environment on centos

    #(erlide in linux can't detect the runtime if build from source, but erlang shell works correctly)su ...

  8. Oracle (内连接)

    例如: 表xuesheng id name 1, Jack 2, Tom 3, Kity 4, nono 表kaoshi id grade 1, 56 2, 76 11, 89 内连接(显示两表匹配的 ...

  9. PHP 进行统一邮箱登陆的代理实现(swoole)

    在工作的过程中,经常会有很多应用有发邮件的需求,这个时候需要在每个应用中配置smtp服务器.一旦公司调整了smtp服务器的配置,比如修改了密码等,这个时候对于维护的人员来说要逐一修改应用中smtp的配 ...

  10. C#读取Visual FoxPro(*.dbf)数据并使用SqlBulkCopy插入到SqlServer 2008 R2数据表中

    公司数据库从32位的SqlServer 2005升级到64位的SqlServer 2008 R2后,无法再像原来通过Link Server连接VFP同步数据,因此考虑用代码程序从VFP数据库中读取所需 ...