UVA 10820 - Send a Table 数论 (欧拉函数)
Send a Table
Input: Standard Input
Output: Standard Output
When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ever pass the time limit. However hard you try, you just can't discover the proper break-off conditions that would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half an our and produce a table of answers for all possible input values, encode this table into a program, submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating, but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a 'technique'. But however hard he tried, he wasn't able to squeeze all his pre-calculated values into a program small enough to pass the judge. The situation looked hopeless, until he discovered the following property regarding the answers: the answers where calculated from two integers, but whenever the two input values had a common factor, the answer could be easily derived from the answer for which the input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range [1, N]. When he knows Answer(x, y), he can easily derive Answer(k*x, k*y), where k is any integer from it by applying some simple calculations involving Answer(x, y) and k. For example if N=4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2), Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric, so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which indicates the value of N. Input is terminated by a line which contains a zero. This line should not be processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how many values Jimmy has to pre-calculate for a certain value of N.
Sample Input Output for Sample Input
2 5 0 |
3 19 |
题目分析:求1~n之间共有多少对互质的数。
如果用普通方法一个一个判断,时间复杂度是O(n^2),会超时。但是可以利用欧拉函数和筛法在O(nloglogn)时间内把50000内与每个数互质的正整数的个数求出来。当求有多少对时,只需令sum[n]*2 —1即可。
#include<stdio.h>
#include<string.h>
#define N 50010
int phi[N],n,sum[N];
void phi_table()
{
int i,j;
memset(phi,0,sizeof(phi));
phi[1]=1;
for(i=2;i<=N;i++)
if(!phi[i])
for(j=i;j<=N;j+=i) /*筛法求欧拉函数值*/
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1); /*phi[j]保存不超过j且与j互质的正整数的个数*/
}
sum[0]=0;
for(i=1;i<=50000;i++)
sum[i]=sum[i-1]+phi[i];
}
int main()
{
phi_table();
int i;
while(~scanf("%d",&n)&&n)
{
printf("%d\n",2*sum[n]-1);
}
return 0;
}
/*转化为有多少对时,2与1互质,但是(2,1)和(1,2)算2对,所以应该乘以2,但是(1,1)被算了两次,所以减去一次*/
UVA 10820 - Send a Table 数论 (欧拉函数)的更多相关文章
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 【UVA 10820】Send a Table(欧拉函数)
Description When participating in programming contests, you sometimes face the following problem: Yo ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- Uva 10820 Send a Table(欧拉函数)
对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...
- UVa 10820 - Send a Table
题目:找到整数区间[1.n]中全部的互质数对. 分析:数论,筛法,欧拉函数.在筛素数的的同一时候.直接更新每一个数字的欧拉函数. 每一个数字一定会被他前面的每一个素数筛到.而欧拉函数的计算是n*π(1 ...
- UVa 11440 Help Tomisu (数论欧拉函数)
题意:给一个 n,m,统计 2 和 n!之间有多少个整数x,使得x的所有素因子都大于M. 析:首先我们能知道的是 所有素数因子都大于 m 造价于 和m!互质,然后能得到 gcd(k mod m!, m ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
随机推荐
- DATEDIFF interval=ms的用法
datediff(ms,@CurrDateTime,@Date)>0 当上面的日期超过24天,用上面的sql会有问题 要修改成如下: (CONVERT(VARCHAR,@CurrDateTime ...
- jQuery实现的向下推送图文信息滚动效果
HTML 我们以新浪微博信息滚动为背景,html中包含了多条微博图文信息,结构如下: <div id="con"> <ul> <li> < ...
- javascript基础学习(八)
javascript之日期对象 学习要点: 日期对象 将日期对象转换为字符串 将日期对象中的日期和时间转换为字符串 日期对象中的日期 日期对象中的时间 设置日期对象中的日期 设置日期对象中的时间 与毫 ...
- 原生JS判断密码强弱
前些天工作中有这个需求,自己手写了相关的JS代码,第一种方法是通过ASCII 码判断密码类型,完成用户注册时判断用户输入密码的强度,分强.弱.中三等级,它可以根据用户输入的密码显示对应的密码强弱等级, ...
- NewRowNeeded和UserAddedRow事件以及RowsAdded的区别使用
NewRowNeeded事件当 VirtualMode 属性为 true 时,将在用户定位到 DataGridView 底部的新行时发生,适合给新行建立一些默认数据和按规则应该产生的数据,但此时不推荐 ...
- css编译工具Sass中混合宏,继承,占位符分别在什么时候使用
//SCSS中混合宏使用 @mixin mt($var){ margin-top: $var; } .block { @include mt(5px); span { display:block; @ ...
- MySQL中删除重复数据只保留一条
用SQL语句,删除掉重复项只保留一条 在几千条记录里,存在着些相同的记录,如何能用SQL语句,删除掉重复的呢 1.查找表中多余的重复记录,重复记录是根据单个字段(peopleId)来判断 SELECT ...
- Ajax实现的长轮询不阻塞同一时间内页面的其他Ajax请求(同域请求)
最近要做一个来电的弹屏功能,利用OM 系统的接口,OM系统发送请求到接口程序,分析数据添加到mysql数据库中,然后把最新的数据id 跟今日来电的总的数量存储到memcache 中.弹屏程序根据读取的 ...
- python 编程之计算器
作业: 使用正则表达式和递归实现计算器功能. 实现: 1.实现带括号的计算 2.实现指数.加减乘除求余等功能 一.实例说明: 本实例自己写了个版本,但依旧存在一点bug,例:-2-2等计算问题,故最后 ...
- NET笔试题集
题目来源于传智播客和各大互联网,复习.重新整理贴出来. 1.简述 private. protected. public. internal.protected internal 访问修饰符和访问权限 ...