Send a Table
Input: 
Standard Input

Output: Standard Output

When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ever pass the time limit. However hard you try, you just can't discover the proper break-off conditions that would bring down the number of iterations to within acceptable limits.

Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half an our and produce a table of answers for all possible input values, encode this table into a program, submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating, but remember: In love and programming contests everything is permitted).

Faced with this problem during one programming contest, Jimmy decided to apply such a 'technique'. But however hard he tried, he wasn't able to squeeze all his pre-calculated values into a program small enough to pass the judge. The situation looked hopeless, until he discovered the following property regarding the answers: the answers where calculated from two integers, but whenever the two input values had a common factor, the answer could be easily derived from the answer for which the input values were divided by that factor. To put it in other words:

Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range [1, N].  When he knows Answer(x, y), he can easily derive Answer(k*x, k*y), where k is any integer from it by applying some simple calculations involving Answer(x, y) and k. For example if N=4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2), Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric, so Answer(3, 2) can not be derived from Answer(2, 3).

Now what we want you to do is: for any values of N from 1 upto and including 50000, give the number of function Jimmy has to pre-calculate.

Input

The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which indicates the value of N. Input is terminated by a line which contains a zero. This line should not be processed.

Output

For each line of input produce one line of output. This line contains an integer  which indicates how many values Jimmy has to pre-calculate for a certain value of N.

Sample Input                               Output for Sample Input

2

5

0

3

19

题目分析:求1~n之间共有多少对互质的数。

如果用普通方法一个一个判断,时间复杂度是O(n^2),会超时。但是可以利用欧拉函数和筛法在O(nloglogn)时间内把50000内与每个数互质的正整数的个数求出来。当求有多少对时,只需令sum[n]*2 —1即可。

#include<stdio.h>
#include<string.h>
#define N 50010
int phi[N],n,sum[N];
void phi_table()
{
int i,j;
memset(phi,0,sizeof(phi));
phi[1]=1;
for(i=2;i<=N;i++)
if(!phi[i])
for(j=i;j<=N;j+=i) /*筛法求欧拉函数值*/
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1); /*phi[j]保存不超过j且与j互质的正整数的个数*/
}
sum[0]=0;
for(i=1;i<=50000;i++)
sum[i]=sum[i-1]+phi[i];
}
int main()
{
phi_table();
int i;
while(~scanf("%d",&n)&&n)
{
printf("%d\n",2*sum[n]-1);
}
return 0;
}
/*转化为有多少对时,2与1互质,但是(2,1)和(1,2)算2对,所以应该乘以2,但是(1,1)被算了两次,所以减去一次*/

UVA 10820 - Send a Table 数论 (欧拉函数)的更多相关文章

  1. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. 【UVA 10820】Send a Table(欧拉函数)

    Description When participating in programming contests, you sometimes face the following problem: Yo ...

  3. UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

    题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...

  4. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...

  5. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  6. Uva 10820 Send a Table(欧拉函数)

    对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...

  7. UVa 10820 - Send a Table

    题目:找到整数区间[1.n]中全部的互质数对. 分析:数论,筛法,欧拉函数.在筛素数的的同一时候.直接更新每一个数字的欧拉函数. 每一个数字一定会被他前面的每一个素数筛到.而欧拉函数的计算是n*π(1 ...

  8. UVa 11440 Help Tomisu (数论欧拉函数)

    题意:给一个 n,m,统计 2 和 n!之间有多少个整数x,使得x的所有素因子都大于M. 析:首先我们能知道的是 所有素数因子都大于 m 造价于 和m!互质,然后能得到 gcd(k mod m!, m ...

  9. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

随机推荐

  1. oracle解析xml(增加对9i版本的支持)

    --方法1  SELECT * FROM  XMLTABLE('$B/DEAL_BASIC/USER_DEAL_INFO' PASSING     XMLTYPE('<?xml version= ...

  2. 关于DM的一点总结[ZZ]

    用IBM的IM做过一段时间的电信客户挖掘由于时间不是很长,做的挖掘模型效果还有待提高应朋友要求简单总结几点(水平有限,也希望经验丰富的朋友给些建议): 1.挖掘工具主要分商业数据产品和集成数据挖掘产品 ...

  3. chapter1-开始(1)

    C++学习小记 之前“看”过C++,但是纯粹只是为了应付考试.现在想重新学习,久仰<C++ primer>大名,书之厚令我生畏,好记性不如烂笔头,遂以博客形式笔记之. 本人编程菜鸟一枚,当 ...

  4. Xcode编译项目出现访问private key提示框

    原因: 在编译时Xcode进行codesign时需要访问"private key"时没有权限,然后让询问是否允许,有三个选项,全部允许.否绝.允许,一次弹出4个(我遇到的) 遇到问 ...

  5. python使用VBA:Excel创建图表(转)

    # -*- coding: utf-8 -*- """ Created on Thu Mar 06 11:22:03 2014 @author: Administrato ...

  6. jQuery-弹窗登录

    在jQuery中实现弹窗常要用到的方法有: width()  :元素的宽度 outerWidth()  元素的宽度 盒子的padding+border 总的宽度 scrollTop()  鼠标滚轮自上 ...

  7. 百度分享 ajax 或分页后显示不出问题解决方案

    自从用了AJAX后,JS重新加载问题就如家常便饭般层出不穷啊.没有系统学习过js感觉亚历山大. 百度后,还是找到了解决办法. 百度分享创建了一个全局对象window._bd_share_main.通过 ...

  8. Article及ArticleList模板

    HTML5滑动条: <input type="range" min="0" max="100" value="55" ...

  9. MySQL Explain 结果解读与实践

    Explain 结果解读与实践   基于 MySQL 5.0.67 ,存储引擎 MyISAM .   注:单独一行的"%%"及"`"表示分隔内容,就象分开&qu ...

  10. iscc2016-basic-明察秋毫

    查看源代码,找到maybe not flag : Jr1p0zr2VfPp 移位密码,注意判断字母大小写,并且数字无变化 s = "Jr1p0zr2VfPp" p = list(s ...