The Noise Channel Model

\(p(e)\): the language Model
\(p(f|e)\): the translation model
where, \(e\): English language; \(f\): French Language.

由法语翻译成英语的概率:
\[p(e|f)=\frac{p(e,f)}{p(f)}=\frac{p(e)p(f|e)}{\sum_e{p(e)p(f|e)}}\]
\[arg\max_e p(e|f)=arg\max_e p(e)p(f|e)\]
我们的翻译结果就是 \(arg\max\) 所得到的 \(e\).

Note

语言模型 \(p(e)\) 和我们之前定义是一样的。而翻译模型,我们会从很多句一一对应的英法语句中训练学习到。
这个模型是IBM Model 的基础。

Wait for Update.

Introduction to Neural Machine Translation - part 1的更多相关文章

  1. 神经机器翻译 - NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

    论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布 ...

  2. 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

  3. 对Neural Machine Translation by Jointly Learning to Align and Translate论文的详解

    读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制 ...

  4. Effective Approaches to Attention-based Neural Machine Translation(Global和Local attention)

    这篇论文主要是提出了Global attention 和 Local attention 这个论文有一个译文,不过我没细看 Effective Approaches to Attention-base ...

  5. On Using Very Large Target Vocabulary for Neural Machine Translation Candidate Sampling Sampled Softmax

    [softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a fas ...

  6. 【转载 | 翻译】Visualizing A Neural Machine Translation Model(神经机器翻译模型NMT的可视化)

    转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models Wi ...

  7. Sequence Models Week 3 Neural Machine Translation

    Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...

  8. [笔记] encoder-decoder NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

    原文地址 :[1409.0473] Neural Machine Translation by Jointly Learning to Align and Translate (arxiv.org) ...

  9. 论文阅读 | Robust Neural Machine Translation with Doubly Adversarial Inputs

    (1)用对抗性的源实例攻击翻译模型; (2)使用对抗性目标输入来保护翻译模型,提高其对对抗性源输入的鲁棒性. 生成对抗输入:基于梯度 (平均损失)  ->  AdvGen 我们的工作处理由白盒N ...

随机推荐

  1. ORA-12520: TNS:listener could not find available handler for requested type of server

    当你碰到ORA-12520错误时,如下所示: 英文错误提示: ORA-12520: TNS:listener could not find available handler for requeste ...

  2. 使用EF自带的EntityState枚举和自定义枚举实现单个和多个实体的增删改查

    本文目录 使用EntityState枚举实现单个实体的增/删/改 增加:DbSet.Add = > EntityState.Added 标记实体为未改变:EntityState.Unchange ...

  3. 机器学习实战笔记(Python实现)-02-决策树

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  4. 使用 python 收集获取 Linux 系统主机信息

    使用 python 代码收集主机的系统信息,主要:主机名称.IP.系统版本.服务器厂商.型号.序列号.CPU信息.内存等系统信息. #!/usr/bin/env python #encoding: u ...

  5. Linux 使用iostat分析IO性能

    原文:http://www.cnblogs.com/bangerlee/articles/2547161.html 对于I/O-bond类型的进程,我们经常用iostat工具查看进程IO请求下发的数量 ...

  6. Leetcode: climbing stairs

    July 28, 2015 Problem statement: You are climbing a stair case. It takes n steps to reach to the top ...

  7. dotnet core 出现Can not find runtime target for framework '.NETCoreApp,Version=v1.6' 的解决办法

    如果你在更新dotnet core新的类库后运行程序提示如下的错误: Can not find runtime target for framework '.NETCoreAPP, Version=v ...

  8. POJO和VO的区别

    网上说  POJO对应DAO层中的数据库,POJO重的成员变量对于表中的每个字段. VO  为POJO的分装,与视图层交互.

  9. [No000072]Windows环境变量列表

    环境变量是目录的可以直接在绝对路径中引用,所有值均可在CMD下用 echo 命令显示以查看. 最常用的有—— %APPDATA% %HOMEPATH% %ProgramFiles% %SYSTEMRO ...

  10. HttpClient

    Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且 ...