Introduction to Neural Machine Translation - part 1
The Noise Channel Model
\(p(e)\): the language Model
\(p(f|e)\): the translation model
where, \(e\): English language; \(f\): French Language.
由法语翻译成英语的概率:
\[p(e|f)=\frac{p(e,f)}{p(f)}=\frac{p(e)p(f|e)}{\sum_e{p(e)p(f|e)}}\]
\[arg\max_e p(e|f)=arg\max_e p(e)p(f|e)\]
我们的翻译结果就是 \(arg\max\) 所得到的 \(e\).
Note
语言模型 \(p(e)\) 和我们之前定义是一样的。而翻译模型,我们会从很多句一一对应的英法语句中训练学习到。
这个模型是IBM Model 的基础。
Wait for Update.
Introduction to Neural Machine Translation - part 1的更多相关文章
- 神经机器翻译 - NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE
论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布 ...
- 课程五(Sequence Models),第三周(Sequence models & Attention mechanism) —— 1.Programming assignments:Neural Machine Translation with Attention
Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...
- 对Neural Machine Translation by Jointly Learning to Align and Translate论文的详解
读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制 ...
- Effective Approaches to Attention-based Neural Machine Translation(Global和Local attention)
这篇论文主要是提出了Global attention 和 Local attention 这个论文有一个译文,不过我没细看 Effective Approaches to Attention-base ...
- On Using Very Large Target Vocabulary for Neural Machine Translation Candidate Sampling Sampled Softmax
[softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a fas ...
- 【转载 | 翻译】Visualizing A Neural Machine Translation Model(神经机器翻译模型NMT的可视化)
转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models Wi ...
- Sequence Models Week 3 Neural Machine Translation
Neural Machine Translation Welcome to your first programming assignment for this week! You will buil ...
- [笔记] encoder-decoder NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE
原文地址 :[1409.0473] Neural Machine Translation by Jointly Learning to Align and Translate (arxiv.org) ...
- 论文阅读 | Robust Neural Machine Translation with Doubly Adversarial Inputs
(1)用对抗性的源实例攻击翻译模型; (2)使用对抗性目标输入来保护翻译模型,提高其对对抗性源输入的鲁棒性. 生成对抗输入:基于梯度 (平均损失) -> AdvGen 我们的工作处理由白盒N ...
随机推荐
- ORA-12520: TNS:listener could not find available handler for requested type of server
当你碰到ORA-12520错误时,如下所示: 英文错误提示: ORA-12520: TNS:listener could not find available handler for requeste ...
- 使用EF自带的EntityState枚举和自定义枚举实现单个和多个实体的增删改查
本文目录 使用EntityState枚举实现单个实体的增/删/改 增加:DbSet.Add = > EntityState.Added 标记实体为未改变:EntityState.Unchange ...
- 机器学习实战笔记(Python实现)-02-决策树
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 使用 python 收集获取 Linux 系统主机信息
使用 python 代码收集主机的系统信息,主要:主机名称.IP.系统版本.服务器厂商.型号.序列号.CPU信息.内存等系统信息. #!/usr/bin/env python #encoding: u ...
- Linux 使用iostat分析IO性能
原文:http://www.cnblogs.com/bangerlee/articles/2547161.html 对于I/O-bond类型的进程,我们经常用iostat工具查看进程IO请求下发的数量 ...
- Leetcode: climbing stairs
July 28, 2015 Problem statement: You are climbing a stair case. It takes n steps to reach to the top ...
- dotnet core 出现Can not find runtime target for framework '.NETCoreApp,Version=v1.6' 的解决办法
如果你在更新dotnet core新的类库后运行程序提示如下的错误: Can not find runtime target for framework '.NETCoreAPP, Version=v ...
- POJO和VO的区别
网上说 POJO对应DAO层中的数据库,POJO重的成员变量对于表中的每个字段. VO 为POJO的分装,与视图层交互.
- [No000072]Windows环境变量列表
环境变量是目录的可以直接在绝对路径中引用,所有值均可在CMD下用 echo 命令显示以查看. 最常用的有—— %APPDATA% %HOMEPATH% %ProgramFiles% %SYSTEMRO ...
- HttpClient
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且 ...