LangChain结合LLM做私有化文档搜索
我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现“幻觉”。针对“幻觉”问题,一般的解决方案是采用RAG做检索增强。
但是我们不可能把所有数据都丢给LLM去学习,比如某个公司积累的某个行业的大量内部知识。此时就需要一个私有化的文档搜索工具了。
本文聊聊如何使用LangChain结合LLM快速做一个私有化的文档搜索工具。之前介绍过,LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。自然,它有这方面的成熟解决方案。
文末,还会向朋友们推荐一款非常好用的AI机器人和LLM API超市,价格实惠又稳定,还可以领一波福利。
1. RAG检索流程
使用 LangChain 实现私有化文档搜索的主要流程,如下图所示:
文档加载 → 文档分割 → 文档嵌入 → 向量化存储 → 文档检索 → 生成回答


2. 代码实践细节
2.1. 文档加载
首先,我们需要加载文档数据。文档可以是各种格式,比如文本文件、PDF、Word 等。使用 LangChain,可以轻松地加载这些文档。下面以PDF为例:
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()
2.2. 文档分割
加载的文档通常会比较大,为了更高效地处理和检索,我们需要将文档分割成更小的段落或句子。LangChain 提供了便捷的文本分割工具,可以按句子、块长度等方式分割文档。
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=50,
chunk_overlap=20,
separators=["\n", "。", "!", "?", ",", "、", ""],
add_start_index=True,
)
texts = text_splitter.split_documents(docs)
分割后的文档内容可以进一步用于生成向量。
2.3. 文档嵌入 Embeddings
文档分割后,我们需要将每一段文本转换成向量,这个过程称为文档嵌入。文档嵌入是将文本转换成高维向量,这是相似性搜索的关键。这里我们选择OpenAI的嵌入模型来生成文档的嵌入向量。
from langchain_openai import OpenAIEmbeddings
embeddings_model = OpenAIEmbeddings(
openai_api_key="sk-xxxxxxxxxxx",
openai_api_base="https://api.302.ai/v1",
)
txts = [txt.page_content for txt in texts]
embeddings = embeddings_model.embed_documents(txts)
2.4. 文档向量化存储
接下来,我们需要将生成的向量化的文档,存入向量数据库中。向量数据库主要用来做相似性搜索,可以高效地存储和检索高维向量。LangChain 支持与多种向量数据库的集成,比如 Pinecone、FAISS、Chroma 等。
本文以FAISS为例,首先需要安装FAISS,直接使用pip install faiss-cpu安装。
from langchain_community.vectorstores import FAISS
db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")
2.5. 文档检索
当用户提出问题时,我们需要在向量数据库中检索最相关的文档。检索过程是计算用户问题的向量表示,然后在向量数据库中查找与之最相似的文档。最后将找到的文档内容,拼接成一个大的上下文。
向量数据库的检索支持多种模式,本文先用最简单的,后续再出文章继续介绍别的模式。
from langchain.retrievers.multi_query import MultiQueryRetriever
retriever = db.as_retriever()
# retriever = db.as_retriever(search_type="similarity_score_threshold",search_kwargs={"score_threshold":.1,"k":5})
# retriever = db.as_retriever(search_type="mmr")
# retriever = MultiQueryRetriever.from_llm(
# retriever = db.as_retriever(),
# llm = model,
# )
context = retriever.get_relevant_documents(query="张学立是谁?")
_content = ""
for i in context:
_content += i.page_content
2.6. 将检索内容丢给LLM作答
最后,我们需要将检索到的文档内容丢入到 prompt 中,让LLM生成回答。LangChain 可以PromptTemplate模板的方式,将检索到的上下文动态嵌入到 prompt 中,然后丢给LLM,这样可以生成准确的回答。
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
question = "张学立是谁?"
template = [
(
"system",
"你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",
),
("human", "你好!"),
("ai", "你好"),
("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)
messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)
output_parser = StrOutputParser()
output_parser.invoke(response)
2.7. 完整代码
最后,将以上所有代码串起来,整合到一起,如下:
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
model = ChatOpenAI(
model_name="gpt-3.5-turbo",
openai_api_key="sk-xxxxxxx",
openai_api_base="https://api.302.ai/v1",
)
loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=50,
chunk_overlap=20,
separators=["\n", "。", "!", "?", ",", "、", ""],
add_start_index=True,
)
texts = text_splitter.split_documents(docs)
embeddings_model = OpenAIEmbeddings(
openai_api_key="sk-xxxxxxx",
openai_api_base="https://api.302.ai/v1",
)
txts = [txt.page_content for txt in texts]
embeddings = embeddings_model.embed_documents(txts)
db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")
retriever = db.as_retriever()
template = [
(
"system",
"你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",
),
("human", "你好!"),
("ai", "你好"),
("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)
question = "张学立是谁?"
context = retriever.get_relevant_documents(query=question)
_content = ""
for i in context:
_content += i.page_content
messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)
output_parser = StrOutputParser()
output_parser.invoke(response)
2.8. 总结、推荐
通过 LangChain可以轻松实现私有化文档搜索,充分利用LLM的能力来处理和检索文档信息。按照文中的步骤,你也可以轻松实现。
好的问答系统离不开优秀的LLM,根据我的个人经验,OpenAI的大模型能力排名是Top1的。但是使用OpenAI不方便,不但需要梯子而且还不稳定。
一款好的LLM摆在面前,却用不了,着实头疼。有没有方便稳定的方式呢?当然有啦,下面我来推荐一款AI自助平台,不但有问答机器人、文生图机器人、文生视频机器人,还有常见的LLM API,稳定又还便宜。
3. 推荐一款好用的AI平台 - 302.AI
3.1. 什么是302.AI
302.AI是一个汇集全球顶级AI的自助平台,汇集全球各类顶尖AI大模型,提供多种AI机器人,各种AI工具的使用和AI API接入。
这个平台太适合开发者了,一站式配齐了 支持各种模型的工具 和 AI API,再也不用这个网站用一下,那个网站用一下了。
自由配置机器人、自由配置各种模型,每一款都很能打。

3.2. 302.AI的优势
我为什么愿意使用302.AI呢?主要还是有点比较多:
- 功能全面:平台提供了各种机器人,其中包括不限于文字处理,图片处理,声音处理。 这一点就可以轻松应付我们平时的工作了,无需到处找AI工具网站。总之,平台提供的机器人,工具和API多种使用方法,可以满足从小白到开发者多种角色的需求。
- 精选优质大模型:平台帮用户测试市面上众多的AI模型,挑出最好用的模型接入到平台,简化用户的挑选成本。而且再大模型的API调用处,还很贴心的集成了Apifox,在线调试,自动生成多种语言的代码。
- 价格透明价格便宜:价格透明,token计算清晰,我对比过多个代理的价格,302.AI绝对是最便宜的,没有之一。
- 按需付费,零门槛:302.AI另外一个特点是,不像大部分的AI工具网站按月收费或者按年收费,302.AI是按需付费,用多少付多少,价格便宜又透明,计费清晰,更无须担心跑路。这两年我见过的倒闭的AI工具站太多了。
- 管理者和使用者分离:使用者无需关心复杂的AI设置,让懂AI的管理者来配置,配置完毕后分享给使用者,简化使用流程。小白也可简易使用。更无需使用梯子,方便又稳定。
- 稳定性好:从我最近的使用感受来看,整体还是比较稳定的。不像有些API,时不时的给我冒一个配额不足的情况。
下面上几个截图,功能较多,我就不一一解说了,欢迎朋友们自行尝试。




总之,302.AI是一个可以满足从工具到API的聚合AI网站,也是一个可以满足从小白到开发者的需求的AI网站,同时,又兼顾了稳定性和性价比。更多功能,欢迎朋友们自行尝试解锁。
3.3. 粉丝福利
我这边创建了AI全能工具箱分享给大家体验,每天都会有 5美元额度,先到先用。
AI全能工具箱链接:https://aitoolbox1-all.tools302.com?pwd=0658 分享码0658,注册完填写个问卷会得到1美元的试用额度。
对于开发者朋友,可以私信我获取免费token,薅一波羊毛。
=====>>>>>> 关于我 <<<<<<=====
本篇完结!欢迎点赞 关注 收藏!!!
原文链接:https://mp.weixin.qq.com/s/idLmCB8OXwtJIqAqfgBxuQ

LangChain结合LLM做私有化文档搜索的更多相关文章
- lucene全文搜索之四:创建索引搜索器、6种文档搜索器实现以及搜索结果分析(结合IKAnalyzer分词器的搜索器)基于lucene5.5.3
前言: 前面几章已经很详细的讲解了如何创建索引器对索引进行增删查(没有更新操作).如何管理索引目录以及如何使用分词器,上一章讲解了如何生成索引字段和创建索引文档,并把创建的索引文档保存到索引目录,到这 ...
- 10 华电内部文档搜索系统 search02
搜索项目并不是一个很大的项目,在实际项目中往往是作为子项目和别的项目集成在一起的.比如说和OA项目集成在一起,作为另外一个项目的子系统来使用.搜索项目的功能并不复杂. 整个项目是文档搜索项目,如题:企 ...
- 海量Office文档搜索
知识管理系统Data Solution研发日记之十 海量Office文档搜索 经过前面两篇文章的介绍,<分享制作精良的知识管理系统 博客备份程序 Site Rebuild>和<分 ...
- 500 多个 Linux 命令文档搜索
500 多个 Linux 命令文档搜索 搜索界面:https://wangchujiang.com/linux-command/ 源码:https://github.com/jaywcjlove/li ...
- 基于.NetCore3.1搭建项目系列 —— 使用Swagger做Api文档 (上篇)
前言 为什么在开发中,接口文档越来越成为前后端开发人员沟通的枢纽呢? 随着业务的发张,项目越来越多,而对于支撑整个项目架构体系而言,我们对系统业务的水平拆分,垂直分层,让业务系统更加清晰,从而产生一系 ...
- 基于.NetCore3.1搭建项目系列 —— 使用Swagger做Api文档 (下篇)
前言 回顾上一篇文章<使用Swagger做Api文档 >,文中介绍了在.net core 3.1中,利用Swagger轻量级框架,如何引入程序包,配置服务,注册中间件,一步一步的实现,最终 ...
- 【Elasticsearch学习】文档搜索全过程
在ES执行分布式搜索时,分布式搜索操作需要分散到所有相关分片,若一个索引有3个主分片,每个主分片有一个副本分片,那么搜索请求会在这6个分片中随机选择3个分片,这3个分片有可能是主分片也可能是副本分片, ...
- SharePoint 2010 文档管理系列之文档搜索
前言:如果一个文档库里面有很多文档,成千上万,对我们来说查找就是个麻烦事儿,所以搜索的必要性就体现出来了.下面,我们简单的介绍下,sharepoint搜索配置,并创建一个简单的搜索页面. 一. 配置S ...
- Asp.net Core WebApi 使用Swagger做帮助文档,并且自定义Swagger的UI
WebApi写好之后,在线帮助文档以及能够在线调试的工具是专业化的表现,而Swagger毫无疑问是做Docs的最佳工具,自动生成每个Controller的接口说明,自动将参数解析成json,并且能够在 ...
- 用Python做SVD文档聚类---奇异值分解----文档相似性----LSI(潜在语义分析)
转载请注明出处:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3848528.html SVD,即奇异值分解,在自然语言处理中,用来做潜在语义 ...
随机推荐
- 自己动手从0开始实现一个分布式RPC框架
简介: 如果一个程序员能清楚的了解RPC框架所具备的要素,掌握RPC框架中涉及的服务注册发现.负载均衡.序列化协议.RPC通信协议.Socket通信.异步调用.熔断降级等技术,可以全方位的提升基本素质 ...
- dotnet OpenXML 聊聊文本段落对齐方式
本文来和大家聊聊在 OpenXML 里面,文本段落对齐方式.在 Word 和 PPT 的文本段落对齐规则是相同的,对齐的规则比较多,本文将一一告诉大家 文本的段落对齐,需要设置给段落属性上,在 Ope ...
- 堆优化模拟退火(List-Based Simulated Annealing|LBSA)
申明 本文部分内容来自List-Based Simulated Annealing Algorithm for Traveling Salesman Problem[1] 如有侵权,请联系删除 引入 ...
- vue安装tinyMCE
目录 [参考视频] [参考文章] 官网: https://www.tiny.cloud/auth/signup/ 资源下载 tinymce 官方为 vue 项目提供了一个组件tinymce-vue n ...
- WEB服务与NGINX(17)- https协议及使用nginx实现https功能
目录 1. https协议及使用nginx实现https功能 1.1 https协议概述 1.2 TLS/SSL协议原理 1.3 https的实现原理 1.4 使用openssl申请证书 1.5 ng ...
- shape-outside
shape-outside定义一个由内容区域的外边缘封闭形成的形状 shape-outside 是一个非常实用的属性,可以实现一些比较复杂的文本环绕效果. shape-outside 的兼容性比较好, ...
- 那什么是URL、URI、URN?
URI Uniform Resource Identifier 统一资源标识符 URL Uniform Resource Locator 统一资源定位符 URN Uniform Resource Na ...
- 4G EPS 第四代移动通信系统
目录 文章目录 目录 4G EPS 4G EPS 4G(the 4th generation mobile communication technology,第四代移动通信技术)提供了 3G 不能满足 ...
- 阿里DataX极简教程
目录 简介 工作流程 核心架构 核心模块介绍 DataX调度流程 支持的数据 实践 下载 环境 执行流程 引用 简介 DataX是一个数据同步工具,可以将数据从一个地方读取出来并以极快的速度写入另外一 ...
- WPF登录界面样例
XAML文件内容如下 1 <Window x:Class="ERP.Views.Login" 2 xmlns="http://schemas.microsoft.c ...