[CF1830F] The Third Grace
题目描述
You are given $ n $ intervals and $ m $ points on the number line. The $ i $ -th intervals covers coordinates $ [l_i,r_i] $ and the $ i $ -th point is on coordinate $ i $ and has coefficient $ p_i $ .
Initially, all points are not activated. You should choose a subset of the $ m $ points to activate. For each of $ n $ interval, we define its cost as:
- $ 0 $ , if there are no activated points in the interval;
- the coefficient of the activated point with the largest coordinate within it, otherwise.
Your task is to maximize the sum of the costs of all intervals by choosing which points to activate.
$ 1 \le t \le 10^5,1 \le n \le 10^6, 1 \le m \le 10^6,1 \le l_i \le r_i \le m,0 \le p_i \le 10^9 $
\(\sum n,\sum m\le 10^6\)
一个非常显然的 dp,定义 \(dp_i\) 前 \(i\) 个数,选择了 \(i\) 的代价。那么枚举上一个数选在哪里,计算一下中间区间的贡献就行了。复杂度 \(O(n^2)\)
这个过程是可以用分块凸包维护,复杂度 \(O(n\sqrt n)\)
也可以用 KTT 维护,复杂度 \(O(log^3n)\)
然后讲官方做法。反过来,考虑一个 \(dp_i\) 对后面的 dp 的贡献。那么发现可以维护一个 \(h\),此时 \(dp_j=dp_i+h_jp_i\),同时要支持后缀加减 \(h\)。
考虑李超树,由于 \(h\) 单调不降,所以同时之前已经加入了李超树的线段不会改变。那么这些线段因为 \(h\) 改变了,线段也要改成 \(k(h+c)-b-k*c\),然后打标记下传就可以了。新增的线段直接按照 \(h\) 来加入。但是注意到要把所有跨过那个后缀的所有线段下传到两边,所以复杂度 \(O(nlog^2n)\)
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
typedef long long LL;
const LL INF=1e18;
int read()
{
char ch=getchar();
int s=0;
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
struct node{
int k;
LL b;
LL ask(int x)
{
return 1LL*k*x+b;
}
}tr[N<<2];
int tg[N<<2],hl[N<<2],hr[N<<2],c[N],l,r,n,m,p[N];
vector<int>g[N];
LL ans=0;
void merge(int o,int x)
{
int md=l+r>>1;
tg[o]+=x;
hl[o]+=x;
hr[o]+=x;
tr[o].b-=1LL*x*tr[o].k;
}
void pushdown(int o)
{
if(tg[o]&&(o<<1|1)<=4*m)
{
merge(o<<1,tg[o]);
merge(o<<1|1,tg[o]);
tg[o]=0;
}
}
void insert(int o,int l,int r,node x)
{
if(x.b<-1e17)
return;
pushdown(o);
int md=hl[o]==hr[o]? hl[o]:hr[o<<1];
if(x.ask(md)>tr[o].ask(md))
swap(tr[o],x);
if(x.ask(hl[o])>tr[o].ask(hl[o]))
insert(o<<1,l,md,x);
if(x.ask(hr[o])>tr[o].ask(hr[o]))
insert(o<<1|1,md+1,r,x);
}
void updtag(int o,int l,int r,int x,int y)
{
if(l>=x)
{
merge(o,y);
return;
}
int md=l+r>>1;
pushdown(o);
insert(o<<1,l,md,tr[o]);
insert(o<<1|1,md+1,r,tr[o]);
tr[o].k=0,tr[o].b=-INF;
if(md>=x)
updtag(o<<1,l,md,x,y);
updtag(o<<1|1,md+1,r,x,y);
hl[o]=hl[o<<1],hr[o]=hr[o<<1|1];
}
pair<int,LL> ask(int o,int l,int r,int x)
{
if(l==r)
return make_pair(hl[o],tr[o].ask(hl[o]));
pushdown(o);
int md=l+r>>1;
pair<int,LL>ret;
if(md>=x)
ret=ask(o<<1,l,md,x);
else
ret=ask(o<<1|1,md+1,r,x);
return make_pair(ret.first,max(ret.second,tr[o].ask(ret.first)));
}
int main()
{
int T=read();
while(T--)
{
n=read(),m=read();
p[++m]=0;
ans=0;
for(int i=1;i<=m;i++)
g[i].clear(),c[i]=0;
for(int i=1;i<=4*m;i++)
hl[i]=hr[i]=tg[i]=tr[i].k=0,tr[i].b=-INF;
for(int i=1;i<=n;i++)
{
l=read(),r=read();
g[l].push_back(r+1);
c[r+1]++;
}
for(int i=1;i<m;i++)
p[i]=read();
for(int i=1;i<=m;i++)
{
LL dp=max(0LL,ask(1,1,m,i).second);
for(int j=0;j<g[i].size();j++)
updtag(1,1,m,g[i][j],1);
updtag(1,1,m,i,-c[i]);
if(i==m)
printf("%lld\n",dp);
insert(1,1,m,(node){p[i],dp});
}
}
}
[CF1830F] The Third Grace的更多相关文章
- 微信小程序开发库grace vs wepy
grace和wepy都是辅助小程序开发的开源库,本文对两者做个对比. 注:本文是作者本人的一些拙见,纯粹的技术讨论,不想引起技术信仰之争,欢迎积极.正向的讨论及建议. 如果你还不了解Grace, 请参 ...
- Style Lessons in Clarity and Grace (11th Edition)中文翻译
Joseph, Williams. "Style: Lessons in Clarity and Grace." Pearson Schweiz Ag (2014). 下载地址:h ...
- Grace Huang 2017/1/12
原文 Huang doesn't think of acting as pretending to be someone else.Rather,she considers it an opportu ...
- Grace Huang 2017/1/11
原文 This actress becomes each character she plays Grace Huang has no interested in doing same thing y ...
- Grace Hopper
葛丽丝·穆雷·霍普(英语:Grace Murray Hopper,1906年12月9日-1992年1月1日),本姓穆雷(Murray),霍普(Hopper)为夫姓,生于美国纽约州纽约市,美国海军准将及 ...
- Grace Hopper 葛丽丝 霍普
Grace Murray Hopper(1906-1992), COBOL之母, Debug之母, A ship in port is safe, but that is not what ships ...
- ORACLE EXPIRED(GRACE)
查询用户状态col username for a20col account_status for a20select username,account_status,LOCK_DATE,EXPIRY_ ...
- 编译器与Debug的传奇:Grace Murray Hopper小传
摘要: 改变世界的程序员前辈. 来自:http://www.road2stat.com/cn/network_3c/grace_murray_hopper.html 这两天读<UNIX痛恨者手册 ...
- C#下IOC/依赖注入框架Grace介绍
对依赖注入或控制反转不了解的童鞋请先自行学习一下这一设计,这里直接介绍项目和实现步骤. Grace是一个开源.轻巧.易用同时特性丰富.性能优秀的依赖注入容器框架.从这篇IOC容器评测文章找到的Grac ...
- Grace模式、Saint模式
一.probe(后端探针) 探测后端,确定他们是否健康,返回的状态用req.backend.healthy核对 backend b1 { .host = "127.0.0.1"; ...
随机推荐
- 【路由器】小米 WR30U 解锁并刷机
本文主要记录个人对小米 WR30U 路由器的解锁和刷机过程,整体步骤与 一般安装流程 类似,但是由于 WR30U 的解锁 ssh 和刷机的过程中有一些细节需要注意,因此记录一下 解锁 ssh 环境准备 ...
- plt.rcParams运行时修改全局配置参数
plt.rcParams简单介绍 plt.rcParams即 "运行时配置参数"("runtime configuration parameters"),是运行 ...
- Gopher进阶神器:拥抱刻意练习,从新手到大师。
发现一个非常友好的工具,帮助我们回顾练习过程,设定目标,并提供丰富多样的Gopher主题练习题. 刻意练习:从新手到大师. Carol 心理学家 Carol Dweck 做过一个实验,她找了一些十岁的 ...
- API接口的对接流程和注意事项
API接口的对接流程和注意事项 随着互联网技术的发展和数字化时代的到来,API接口已经成为应用程序之间进行数据交换和通信的重要方式.API即应用程序接口,是一种定义.调用和交互的规范,使得不同应用 ...
- IDEA 配置桌面快捷方式
IDEA 配置桌面快捷方式 目录 IDEA 配置桌面快捷方式 1.下载idea.tar解压 2.配置快捷方式 3.为什么要存放在这个目录? 1.下载idea.tar解压 tar xf ideaIC-2 ...
- Codeforces Round 882 div.2 A
Smiling&Weeping ----总有人间一两风,填我十万八千梦 A. The Man who became a God time limit per test 1 second mem ...
- Vue源码学习(四):<templete>渲染第三步,将ast语法树转换为渲染函数
好家伙, Vue源码学习(三):<templete>渲染第二步,创建ast语法树, 在上一篇,我们已经成功将 我们的模板 转换为ast语法树 接下来我们继续进行操作 1.方法封装 由于 ...
- 前端三件套系例之HTML——HTML文档结构、文档声明、主体结构标签、HEAD头部标签、meta元信息、Body内常用标签、6 其他了解
文章目录 HTML文档结构 1. 文档声明 2.主体结构标签 3.HEAD头部标签 4.meta元信息 5 Body内常用标签 5.1 基本标签(块级标签和内联标签) 5.2 div标签和span标签 ...
- vue之留言板
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 基于jquery+html开发的json格式校验工具
json简介 JSON是一种轻量级的数据交换格式. 易于人阅读和编写.同时也易于机器解析和生成. 它基于JavaScript Programming Language, Standard ECMA-2 ...