五、V.Pan 发现一种方法,可以用 132 464 次乘法操作完成 68 x 68 的矩阵相乘,发现另一种方法,可以用 143 640 次乘法操作完成 70 x 70 的矩阵相乘,还发现一种方法,可以用155 424次乘法操作完成 72 x 72 的矩阵相乘。当用于矩阵相乘的分治算法时,上述哪种方法会得到最佳的渐近运行时间?与 Strassen 算法相比,性能如何?

文心一言:

由于矩阵相乘的时间复杂度为 O(n ^ 3),因此分治算法的时间复杂度也为 O(n ^ 3)。因此,这些方法的时间复杂度都相同,都是 O(n^3)。

与 Strassen 算法相比,这些方法的性能可能会较差。Strassen 算法可以在 7 x 7 的矩阵相乘中完成 28 次乘法操作,而在 8 x 8 的矩阵相乘中完成 56 次乘法操作。因此,Strassen 算法的时间复杂度为 O(n^2),比分治算法要快。

但是,Strassen 算法的推广并不容易,因此它只适用于小型矩阵相乘问题。对于大型矩阵相乘问题,分治算法仍然是广泛使用的算法之一。

讯飞星火:

为了比较这三种方法的性能,我们可以计算它们在执行矩阵相乘时所需的时间。对于较小的矩阵,使用分治算法通常比使用 Strassen 算法更高效。因此,我们可以先计算出 V. Pan 发现的三种方法在执行 68 x 68、70 x 70 和 72 x 72 矩阵相乘时的渐近运行时间。然后,我们将这些时间与 Strassen 算法的时间进行比较。V. Pan 发现的方法:

132464次乘法操作完成68x68矩阵相乘:T(n) = O(n^3)

143640次乘法操作完成70x70矩阵相乘:T(n) = O(n^3)

155424次乘法操作完成72x72矩阵相乘:T(n) = O(n^3)Strassen 算法:

132464次乘法操作完成68x68矩阵相乘:T(n) = O(n^log_2(n)) = O(n^0.959)

143640次乘法操作完成70x70矩阵相乘:T(n) = O(n^log_2(n)) = O(n^0.959)

155424次乘法操作完成72x72矩阵相乘:T(n) = O(n^log_2(n)) = O(n^0.959)从上面的计算结果可以看出,当用于矩阵相乘的分治算法时,上述哪种方法会得到最佳的渐近运行时间?答案是 V. Pan 发现的三种方法。与 Strassen 算法相比,它们的性能略低,但仍然非常高效。

华为盘古:

对于第一个问题,V.Pan 使用了一种迭代算法,其中每一步都使用 132 464 次乘法操作,因此可以很快地找到渐近运行时间。

对于第二个问题,V.Pan 使用了一种分治算法,其中每一步都使用 143 640 次乘法操作,因此可以更快地找到渐近运行时间。

对于第三个问题,V.Pan 使用了一种并行算法,其中每一步都使用 155 424 次乘法操作,因此可以更快地找到渐近运行时间。

在渐近运行时间方面,V.Pan 算法的性能与 Strassen 算法相当,甚至稍优于 Strassen 算法。这是因为 V.Pan 算法在每一步上都比 Strassen 算法花费更少的时间,因此总运行时间可能会更短。

综上所述,使用 132 464 次乘法操作完成 68 x 68 的矩阵相乘,使用 143 640 次乘法操作完成 70 x 70 的矩阵相乘,以及使用 155 424 次乘法操作完成 72 x 72 的矩阵相乘,都可以在不同的时间复杂度下找到渐近运行时间。在选择算法时,需要考虑任务的规模、精度和时间要求等因素,以选择最适合的算法。

chatglm:

根据分治算法的基本思想,将复杂的问题分成多个子问题,并且每个子问题的解法是相对简单的。在这种情况下,Pan 的方法将矩阵相乘问题分成了三个子问题,而 Strassen 算法将矩阵相乘问题分成了五个子问题。

由于 Pan 的方法需要更少的乘法操作,因此它在分治算法中可能会得到更好的渐近运行时间。然而,Strassen 算法在理论上具有更好的性能,因为它可以将问题分成更多的子问题,并且每个子问题的解法更加简单。

总的来说,Pan 的方法和 Strassen 算法在矩阵相乘问题上都具有一定的优点和局限性,具体哪种方法最佳取决于具体问题的规模和复杂度。此外,与 Strassen 算法相比,Pan 的方法可能需要更多的计算量和存储空间,因此需要权衡各种因素来选择合适的算法。

chatgpt:

对于矩阵相乘的分治算法,通常会采用 Strassen 算法,其时间复杂度为 $O(n^{\log_2 7}) \approx O(n^{2.81})$。

在上述三种方法中,第一种方法可以完成 68 x 68 的矩阵相乘,需要进行 132464 次乘法操作,平均每个元素需要进行 $\frac{132464}{68^3}\approx 0.00053$ 次乘法操作。第二种方法可以完成 70 x 70 的矩阵相乘,需要进行 143640 次乘法操作,平均每个元素需要进行 $\frac{143640}{70^3}\approx 0.0005$ 次乘法操作。第三种方法可以完成 72 x 72 的矩阵相乘,需要进行 155424 次乘法操作,平均每个元素需要进行 $\frac{155424}{72^3}\approx 0.00049$ 次乘法操作。

因此,第三种方法的运行效率最好,平均每个元素需要进行最少的乘法操作。然而,这些方法的运行时间和 Strassen 算法相比仍然较差。根据 Strassen 算法的时间复杂度,当矩阵大小 $n\geqslant 2^{k}$ 时,其时间复杂度为 $O(n^{k})$,其中 $k=\log_2 7 \approx 2.81$。因此,当矩阵较大时,Strassen 算法的性能将远优于这三种方法。

文心一言 VS 讯飞星火 VS chatgpt (23)-- 算法导论4.2 5题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. 分布式事务 —— SpringCloud Alibaba Seata

    Seata 简介 传统的单体应用中,业务操作使用同一条连接操作不同的数据表,一旦出现异常就可以整体回滚.随着公司的快速发展.业务需求的变化,单体应用被拆分成微服务应用,原来的单体应用被拆分成多个独立的 ...

  2. 一次考试的T3

    啊这感觉不太可做观察性质,发现这个字符串只由ABC构成这个性质必须利用仅仅由3种字符组成意味着什么呢?这个字符串只有种可能性这个有什么用呢?只是说明暴力枚举的时间复杂度会小一些而已.不止是这些. 首先 ...

  3. 以效率为导向:用ChatGPT和HttpRunner实现敏捷自动化测试(二)

    1.前言 在上一篇文章: 利用ChatGPT提升测试工作效率--测试工程师的新利器(一)中,我们提到了如何通过chatGPT生成单接口测试用例,然后再让chatGPT去根据测试用例去生成接口自动化脚本 ...

  4. CF1338A

    题目简化和分析: \(a_{i}\ge a_{i-1}\) 已经满足直接跳过 \(a_{i}<a_{i-1}\) 我们就要将其的差进行二进制的分解,使得 \(a_{i-1}=a_i\) 我也不知 ...

  5. ELK-日志收集-Kibana WEB安全认证

    1.ELK收集MYSQL日志实战: 日志收集存放目录位置: /usr/local/logstash/config/etc/   1)日志采集-存入redis缓存数据库:mysql-redis.conf ...

  6. matlab快速入门笔记

    命名规则: clc:清除命令行的所有命令 clear all:清除所有工作区的内容 注释:两个% + 空格 %% matlab的数据类型 1.数字 3 3 * 5 3 / 5 3 + 5 3 - 5 ...

  7. cannot import name '_BindParamClause' from 'sqlalchemy.sql.expression'

    python3.8 安装环境组件正常安装 运行 flask db init 报错 cannot import name '_BindParamClause' from 'sqlalchemy.sql. ...

  8. 由后缀表达式题目:stoi atoi 函数新发现

    洛谷上的题:有些·表示一个操作结束~假装没看到 1 #include<iostream> 2 #include<stack> 3 #include<string> ...

  9. Kubernetes 漫游:etcd

    概述 etcd 是一个基于 Raft 协议实现.开源的.分布式的键值存储系统.主要用于在分布式系统中提供强一致性和高可用性的数据存储. etcd 在 Kubernetes 中的作用如下: 集群状态数据 ...

  10. 金蝶云星空与吉客云电商ERP数据对接

    01 系统说明: 吉客云 吉客云: 从业务数字化和组织数字化两个方向出发,以生成流程的闭环为依归,致力于为企业的数字化升级提供落地工具.销售订单层面,吉客云对接了国内外主流的销售平台,兼容了电商渠道. ...