ringbuffer因为它能复用缓冲空间,通常用于网络通信连接的读写,虽然市面上已经有了go写的诸多版本的ringbuffer组件,虽然诸多版本,实现ringbuffer的核心逻辑却是不变的。但发现其内部提供的方法并不能满足我当下的需求,所以还是自己造一个吧。

源码已经上传到github

https://github.com/HobbyBear/ringbuffer

需求分析

我在基于epoll实现一个网络框架时,需要预先定义好的和客户端的通信协议,当从连接读取数据时需要判读当前连接是否拥有完整的协议(实际网络环境中可能完整的协议字节只到达了部分),有才会将数据全部读取出来,然后进行处理,否则就等待下次连接可读时,再判断连接是否具有完整的协议。

由于在读取时需要先判断当前连接是否有完整协议,所以读取时不能移动读指针的位置,因为万一协议不完整的话,下次读取还要从当前的读指针位置开始读取。

所以对于ringbuffer 组件我会实现一个peek方法

func (r *RingBuffer) Peek(readOffsetBack, n int) ([]byte, error)

peek方法两个参数,n代表要读取的字节数, readOffsetBack 代表读取是要在当前读位置偏移的字节数,因为在设计协议时,往往协议不是那么简单(可能是由多个固定长度的数据构成) ,比如下面这样的协议格式。

完整的协议有三段构成,每段开头都会有一个4字节的大小代表每段的长度,在判断协议是否完整时,就必须看着3段的数据是否都全部到达。 所以在判断第二段数据是否完整时,会跳过前面3个字节去判断,此时readOffsetBack 将会是3。

此外我还需要一个通过分割符获取字节的方法,因为有时候协议不是固定长度的数组了,而是通过某个分割符判断某段协议是否结束,比如换行符。

func (r *RingBuffer) PeekBytes(readOffsetBack int, delim byte) ([]byte, error)

接着,还需要提供一个更新读位置的方法,因为一旦判断是一个完整的协议后,我会将协议数据全部读取出来,此时应该要更新读指针的位置,以便下次读取新的请求。

func (r *RingBuffer) AddReadPosition(n int)

n 便是代表需要将读指针往后偏移的n个字节。

ringbuffer 原理解析

接着,我们再来看看实际上ringbuffer的实现原理是什么。

首先来看下一个ringbuffer应该有的属性

type RingBuffer struct {
buf []byte
reader io.Reader
r int // 标记下次读取开始的位置
unReadSize int // 缓冲区中未读数据大小
}

buf 用作连接读取的缓冲区,reader 代表了原链接,r代表读取ringbuffer时应该从字节数组的哪个位置开始读取,unReadSize 代表缓冲区当中还有多少数据没有读取,因为你可能一次性从reader里读取了很多数据到buf里,但是上层应用只取buf里的部分数据,剩余的未读数据就留在了buf里,等待下次被应用层继续读取。

我们用一个5字节的字节数组当做缓冲区, 首先从ringbuffer读取数据时,由于ringbuffer内部没有数据,所以需要从连接中读取数据然后写到ringbuffer里。

如下图所示:

假设ringBuffer规定每次向原网络连接读取时 按4字节读取到缓冲区中(实际情况为了减少系统调用开销,这个值会更多,尽可能会一次性读取更多数据到缓冲区) write pos 指向的位置则代表从reader读取的数据应该从哪个位置开始写入到buf字节数组里。

writePos = (r + unReadSize) % len(buf)



接着,上层应用只读取了3个字节,缓冲区中的读指针r和未读空间就会变成下面这样

如果此时上层应用还想再读取3个字节,那么ringbuffer就必须再向reader读取字节填充到缓冲区上,我们假设这次向reader索取3个字节。缓冲区的空间就会变成下面这样



此时已经复用了首次向reader读取数据时占据的缓冲空间了。

当填充上字节后,应用层继续读取3个字节,那么ringBuffer会变成这样

读指针又指向了数组的开头了,可以得出读指针的计算公式

r = (r + n)% len(buf)

ringBuffer 代码解析

有了前面的演示后,再来看代码就比较容易了。用peek 方法举例进行分析,

func (r *RingBuffer) Peek(readOffsetBack, n int) ([]byte, error) {
// 由于目前实现的ringBuffer还不具备自动扩容,所以不支持读取的字节数大于缓冲区的长度
if n > len(r.buf) {
return nil, fmt.Errorf("the unReadSize is over range the buffer len")
}
peek:
if n <= r.UnReadSize()-readOffsetBack {
// 说明缓冲区中的未读字节数有足够长的n个字节,从buf缓冲区直接读取
readPos := (r.r + readOffsetBack) % len(r.buf)
return r.dataByPos(readPos, (r.r+readOffsetBack+n-1)%len(r.buf)), nil
}
// 说明缓冲区中未读字节数不够n个字节那么长,还需要从reader里读取数据到缓冲区中
err := r.fill()
if err != nil {
return nil, err
}
goto peek
}

peek方法的大致逻辑是首先判断要读取的n个字节能不能从缓冲区buf里直接读取,如果能则直接返回,如果不能,则需要从reader里继续读取数据,直到buf缓冲区数据够n个字节那么长。

dataByPos 方法是根据传入的元素位置,从buf中读取在这个位置区间内的数据。

// dataByPos 返回索引值在start和end之间的数据,闭区间
func (r *RingBuffer) dataByPos(start int, end int) []byte {
// 因为环形缓冲区原因,所以末位置索引值有可能小于开始位置索引
if end < start {
return append(r.buf[start:], r.buf[:end+1]...)
}
return r.buf[start : end+1]
}

fill() 方法则是从reader中读取数据到buf里。

fill 情况分析

reader填充新数据到buf后,未读空间未跨越buf末尾



当从reader读取完数据后,如果 end := r.r + r.unReadSize + readBytes end指向了未读空间的末尾,如果没有超过buf的长度,那么将数据复制到buf里的逻辑很简单,直接在当前write pos的位置追加读取到的字节就行。

// 此时writePos 没有超过 len(buf)
writePos = (r + unReadSize)

未读 空间 本来就 已经从头覆盖

当未读空间本来就重新覆盖了buf头部,和上面类似,这种情况也是直接在write pos 位置追加数据即可。

未读空间未跨越buf末尾,当从reader追加数据到buf后发现需要覆盖buf头部



这种情况需要将读取的数据一部分覆盖到buf的末尾

 writePos := (r.r + r.unReadSize) % len(r.buf)
n := copy(r.buf[writePos:], buf[:readBytes])

一部分覆盖到buf的头部

end := r.r + r.unReadSize + readBytes
copy(r.buf[:end%len(r.buf)], buf[len(r.buf)-writePos:])

现在再来看fill的源码就比较容易理解了。

func (r *RingBuffer) fill() error {
if r.unReadSize == len(r.buf) {
// 当未读数据填满buf后 ,就应该等待上层应用把未读数据读取一部分再来填充缓冲区
return fmt.Errorf("the unReadSize is over range the buffer len")
}
// batchFetchBytes 为每次向reader里读取多少个字节,如果此时buf的剩余空间比batchFetchBytes小,则应该只向reader读取剩余空间的字节数
readLen := int(math.Min(float64(r.batchFetchBytes), float64(len(r.buf)-r.unReadSize)))
buf := make([]byte, readLen)
readBytes, err := r.reader.Read(buf)
if readBytes > 0 {
// 查看读取readBytes个字节后,未读空间有没有超过buf末尾指针,如果超过了,在复制数据时需要特殊处理
end := r.r + r.unReadSize + readBytes
if end < len(r.buf) {
// 没有超过末尾指针,直接将数据copy到writePos后面
copy(r.buf[r.r+r.unReadSize:], buf[:readBytes])
} else {
// 超过了末尾指针,有两种情况,看下图分析
writePos := (r.r + r.unReadSize) % len(r.buf)
n := copy(r.buf[writePos:], buf[:readBytes])
if n < readBytes {
copy(r.buf[:end%len(r.buf)], buf[len(r.buf)-writePos:])
}
}
r.unReadSize += readBytes
return nil
}
if err != nil {
return err
}
return nil
}

go 实现ringbuffer以及ringbuffer使用场景介绍的更多相关文章

  1. 消息中间件activemq的使用场景介绍(结合springboot的示例)

    一.消息队列概述 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题.实现高性能,高可用,可伸缩和最终一致性架构.是大型分布式系统不可缺少的中间件. 目前在生产环境,使 ...

  2. Redis 中 5 种数据结构的使用场景介绍

    这篇文章主要介绍了Redis中5种数据结构的使用场景介绍,本文对Redis中的5种数据类型String.Hash.List.Set.Sorted Set做了讲解,需要的朋友可以参考下 一.redis ...

  3. 从Client应用场景介绍IdentityServer4(五)

    原文:从Client应用场景介绍IdentityServer4(五) 本节将在第四节基础上介绍如何实现IdentityServer4从数据库获取User进行验证,并对Claim进行权限设置. 一.新建 ...

  4. 从Client应用场景介绍IdentityServer4(四)

    原文:从Client应用场景介绍IdentityServer4(四) 上节以对话形式,大概说了几种客户端授权模式的原理,这节重点介绍Hybrid模式在MVC下的使用.且为实现IdentityServe ...

  5. 从Client应用场景介绍IdentityServer4(三)

    原文:从Client应用场景介绍IdentityServer4(三) 在学习其他应用场景前,需要了解几个客户端的授权模式.首先了解下本节使用的几个名词 Resource Owner:资源拥有者,文中称 ...

  6. 从Client应用场景介绍IdentityServer4(一)

    原文:从Client应用场景介绍IdentityServer4(一) 一.背景 IdentityServer4的介绍将不再叙述,百度下可以找到,且官网的快速入门例子也有翻译的版本.这里主要从Clien ...

  7. 从Client应用场景介绍IdentityServer4(二)

    原文:从Client应用场景介绍IdentityServer4(二) 本节介绍Client的ClientCredentials客户端模式,先看下画的草图: 一.在Server上添加动态新增Client ...

  8. SharePoint Server 2013开发之旅(一):新的开发平台和典型开发场景介绍

    我终于开始写这个系列文章,实际上确实有一段时间没有动笔了.最近重新安装了一套SharePoint Server 2013的环境,计划利用工作之余的时间为大家写一点新的东西. SharePoint Se ...

  9. ZooKeeper应用场景介绍

    ZooKeeper是一个高可用的分布式数据管理与系统协调框架.维护着一个树形层次结构,书中的节点被称为znode.znode可以用来存储数据,并且有一个与之相关联的ACL(权限),znode不能大于1 ...

  10. Memcache应用场景介绍,说明

    面临的问题 对于高并发高访问的Web应用程序来说,数据库存取瓶颈一直是个令人头疼的问题.特别当你的程序架构还是建立在单数据库模式,而一个数据池连接数峰 值已经达到500的时候,那你的程序运行离崩溃的边 ...

随机推荐

  1. 详解DDD:如何避免写流水账代码?

    在日常工作中我观察到,面对老系统重构和迁移场景,有大量代码属于流水账代码,通常能看到开发在对外的API接口里直接写业务逻辑代码,或者在一个服务里大量的堆接口,导致业务逻辑实际无法收敛,接口复用性比较差 ...

  2. GO实现Redis:GO实现内存数据库(3)

    实现Redis的database层(核心层:处理命令并返回) https://github.com/csgopher/go-redis datastruct/dict/dict.go type Con ...

  3. 用ACDSee查看Office文档?No!有中文解决方案吗?暂未发现!

    看图软件选择 用过不少看图软件,20年前就觉得ACDSee实在太好用了,界面漂亮.速度快.格式多.体积小! 后来图像格式越来越丰富,ACDSee版本也越来越新,体积越来越大. 看图软件也越来越繁杂,免 ...

  4. jQ的工具类方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 【前端黑魔法】浏览器打开任意可执行exe文件方法

    思路:通过注册表注册自定义URL协议执行bat脚本,将文件路径作为参数传入 环境:win10 前置问题与条件 问题1:可以从浏览器直接打开可执行文件吗? 答:不能.其实可以通过 ActiveXObje ...

  6. MySQL(十一)索引的分类和创建原则

    索引的创建与设计原则 1 索引的声明与使用 1.1 索引的分类 ​ MySQL索引包括普通索引.唯一性索引.全文索引.单列索引.多列索引和空间索引 按照逻辑结构划分,主要有四种:普通索引.唯一性索引. ...

  7. MySQL(十)表空间结构:区、段与碎片区

    表空间结构:区.段与碎片区 为什么要有区? ​ B+树中的每一层的页都会形成一个双向链表,双向链表之间的物理位置可能会离得非常远,当遇到范围查询的适用场景的时候,就会定位到最左边和最右边的记录,然后沿 ...

  8. Linux(三)磁盘管理

    Linux磁盘管理 Linux中的tree工具 tree可以查看目录的树形结构,前提是需要自行安装 yum install tree -y [root@hadoop100 ~]# tree ./ ./ ...

  9. python 类中的属性排序

    可以使用Python中的类(class)来定义一个包含姓名和年龄的类.以下是一个示例代码: class Person: def __init__(self, name, age): self.name ...

  10. NC23054 华华开始学信息学

    题目链接 题目 题目描述 因为上次在月月面前丢人了,所以华华决定开始学信息学.十分钟后,他就开始学树状数组了.这是一道树状数组的入门题: 给定一个长度为 \(N\) 的序列 \(A\) ,所有元素初值 ...