前言

在OLAP实践中,在有数据更新的场景中,比如存储订单数据,我们经常会用到ReplaceingMergeTree引擎来去重数据,以获取数据的最新状态。但是ReplaceingMergeTree引擎实现数据的去重合并的操作是异步的,这样在实际查询的时候,其实是仍然有一部分数据是未进行合并的。为了保证统计数据的准确性,比如订单金额,一个常用的方法是在查询时增加final关键字。那final关键字是如何合并数据的,以及合并的数据范围是怎样的,本文就对此做一个简单的探索。

知识准备

分片:分片就是clickhouse的实例节点,不同的分片就代表不同的节点或机器,分片之间是物理隔离的 分区:分区是一个表中通过指定的规则划分而成的逻辑数据集,比如日期分区,分区是一种逻辑上的,不同的分片上会有相同的分区

探索过程

探索过程比较长,请大家保持耐心,如果不想看过程,可以直接看结论哈,马上开始~

本文基于的clickhouse版本为version 23.3.1.2823

创建表

创建ReplacingMergeTree引擎的表,分布式表union_order_onl_all_test,本地表union_order_onl_local_test,以日期为分区,order_id作为排序键,mid是消息ID,用消息ID作为数据变更的版本号,同时order_id字段作为分片hash字段,不同的订单会被写入到不同的实例上。

CREATE TABLE gbn_onl_mix.union_order_onl_local_test on cluster lf6ckcnts05
(
`order_id` UInt64 COMMENT '订单号',
`after_prefr_amount_1` Float64 COMMENT '订单金额',
`deal_flag` UInt8 COMMENT '成交标识',
`mid` String COMMENT '消息ID',
`update_time` String COMMENT '更新时间',
`ver` UInt64 DEFAULT toUInt64OrZero(mid) COMMENT '版本号',
`dt`Date DEFAULT toDate(update_time) COMMENT '分区'
)
ENGINE = ReplicatedReplacingMergeTree('/clickhouse/lf6ckcnts05/jdob_ha/gbn_onl_mix/lf6ckcnts05/{shard}', '{replica}', ver)
PARTITION BY toYYYYMMDD(dt)
ORDER BY (order_id)
TTL dt + toIntervalDay(7)
SETTINGS storage_policy = 'jdob_ha', index_granularity = 3 CREATE TABLE gbn_onl_mix.union_order_onl_all_test on cluster lf6ckcnts05 as gbn_onl_mix.union_order_onl_local_test
engine=Distributed(lf6ckcnts05, gbn_onl_mix, union_order_onl_local_test, cityHash64(order_id)) ;

数据初始化

初始数据包括2个订单,111和222,初始版本都是0,初始成交状态也都是0,日期是2023-05-28

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,0, 0,'2023-05-28'),('222',2,0,0,'2023-05-28');

查询分区信息和数据如下:可以看到数据被写入到了1个分区的2个part中,分区都是20230528,part名都是20230528_0_0_0

知识点详见 https://clickhouse.com/docs/zh/engines/table-engines/mergetree-family/custom-partitioning-key 分区信息有重复是因为lf6ckcnts05集群的配置是有一个副本

验证同分片同分区数据合并

final合并

order_id=111有数据更新,mid变成了1,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,0, 1,'2023-05-28');

查询分区信息如下,可见增加了一个part,分区为20230528,part名为20230528_1_1_0

查询数据如下,可见order_id=111的订单,版本0和版本1的数据都是存在的

SELECT * FROM gbn_onl_mix.union_order_onl_all_test WHERE dt = '2023-05-28'

查询数据使用final结果如下,可见order_id=111的订单,只查询出最新版本1的数据

SELECT * FROM gbn_onl_mix.union_order_onl_all_test final WHERE dt = '2023-05-28'

再查询一下实际的数据如下,结果order_id=111的2个版本的数据还是都被查询出来了,可见final查询对实际物理数据的存储没有影响

SELECT * FROM gbn_onl_mix.union_order_onl_all_test WHERE dt = '2023-05-28'

小结:final可以合并同分片同分区的数据,并且final合并数据只是针对当次查询,不会对数据进行物理合并

引擎合并

order_id=111有数据更新,mid变成了2,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,0, 2,'2023-05-28');

查询分区和数据如下,分区20230528,增加一个part,名为20230528_2_2_0

order_id=111有数据更新,mid变成了3,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,0, 3,'2023-05-28');

分区20230528,增加名为20230528_2_2_0的part

此时数据还没有被引擎合并,先去吃个饭吧~

Later For a Moment ~~~

吃饭回来,查询分区,发现数据已经被引擎合并了,合并后的分区为20230528_0_3_1,但是同分区不同分片的数据没有被合并

小结:ReplaceingMergeTree引擎合并数据,合并的是同分片同分区的数据

验证同分片不同分区数据合并

final合并

order_id=111数据继续更新,mid变成了4,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,1, 4,'2023-05-29');

查询分区和数据如下,可见增加了一个part,分区是20230529,part名为20230529_0_0_0,order_id=111订单数据版本3和版本4同时存储,数据还未合并

使用final查询数据,结果如下,我们会发现,order_id=111的订单在2个分区2023-05-28和2023-05-29中的数据被合并了

SELECT * FROM gbn_onl_mix.union_order_onl_all_test final

小结:final可以跨分区进行合并

引擎合并

order_id=111数据继续更新,mid变成5、6、7,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,1, 5,'2023-05-29','111',1,1, 6,'2023-05-29','111',1,1, 7,'2023-05-29');

查询分区和数据如下,可见增加part 20230529_1_1_0,只插入了一条最新消息为7的数据,即插入数据时,数据就已经合并了

order_id=111数据继续更新,mid变成8、9,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,1, 8,'2023-05-29');
INSERT into gbn_onl_mix.union_order_onl_all_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('111',1,1, 9,'2023-05-29');

查询分区和数据如下,新增part 20230529_2_2_0和20230529_3_3_0

使用final同时查询2个分区数据,以及单独查询单个分区的数据,结果如下,可以看到卡不同的分区,最后合并的结果也不同,(这不是废话嘛~~)

SELECT * FROM gbn_onl_mix.union_order_onl_all_test final

SELECT * FROM gbn_onl_mix.union_order_onl_all_test final WHERE dt = '2023-05-29'

SELECT * FROM gbn_onl_mix.union_order_onl_all_test final WHERE dt = '2023-05-28'

Later For a Moment ~~~

数据合并完成,结果如下,part 20230529_0_0_0、20230529_1_1_0、20230529_2_2_0、20230529_3_3_0变成active=0,合并后part为20230529_0_3_1,但是分区20230508的part 20230528_0_3_1并没有被合并

查询分区数据,结果如下

SELECT * FROM gbn_onl_mix.union_order_onl_all_test WHERE dt = '2023-05-28'
SELECT * FROM gbn_onl_mix.union_order_onl_all_test WHERE dt = '2023-05-29'

小结:无论是从分区信息还是从数据结果来看,ReplaceingMergeTree引擎是不会合并同分片不同分区的数据的

验证不同分片数据合并

final合并

考虑order_id=222的订单数据,金额修改成22以做区分,在不同的分片上插入变更数据,本次插入改用向本地表中插入数据,可达到跨分片实例的效果,如下

order_id=222的订单,mid变成1,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_local_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('222',22,0,1,'2023-05-28');

查询数据,发现居然和版本0插入到同一个分片上了

SELECT * FROM gbn_onl_mix.union_order_onl_local_test WHERE dt = '2023-05-28'

再来一次,order_id=222的订单,mid变成2,即插入如下数据

INSERT into gbn_onl_mix.union_order_onl_local_test (order_id,after_prefr_amount_1,deal_flag,mid,update_time) values ('222',22,0,2,'2023-05-28');

查询数据,可见这次数据是插入到了不同的分片实例上

SELECT * FROM gbn_onl_mix.union_order_onl_local_test WHERE dt = '2023-05-28'

查看目前分区20230528的数据,如下

SELECT * FROM gbn_onl_mix.union_order_onl_all_test WHERE dt = '2023-05-28'

使用final查询结果如下,可见final查询不能合并跨分片的数据,(order_id=222,ver=1和ver=2是存储在不同分片上的数据)

SELECT * FROM gbn_onl_mix.union_order_onl_all_test final WHERE dt = '2023-05-28'

引擎合并

手动触发引擎合并,如下

optimize table union_order_onl_local_test on cluster lf6ckcnts05 FINAL;

查询数据结果,如下,结果同final查询

小结:无论是final查询还是引擎合并,不同分片上的数据都不会被合并,即使是同分区的也不会被合并

结论

啰哩啰嗦这么多,总结一下吧~~

1.对于不同分片上的数据来说,ReplaceingMergeTree引擎合并和查询时加final的合并,都不会合并不同分片上的数据

2.对于相同分片上的数据来说,ReplaceingMergeTree引擎合并,只合并同分区的数据,不同分区的数据不会合并;查询时加final的合并,会对不同分区的数据进行合并,合并是按照排序键进行合并的,如果想避免不同分区间的合并可以在排序键中增加分区字段

如有问题请指正,欢迎大家沟通交流,感谢~~

作者:京东零售 曹建奇

来源:京东云开发者社区

【Clickhouse】ReplaceingMergeTree引擎final实现合并去重探索的更多相关文章

  1. Clickhouse表引擎探究-ReplacingMergeTree

    作者:耿宏宇 1 表引擎简述 1.1 官方描述 MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合 ...

  2. Clickhouse表引擎之MergeTree

    1.概述 在Clickhouse中有多种表引擎,不同的表引擎拥有不同的功能,它直接决定了数据如何读写.是否能够并发读写.是否支持索引.数据是否可备份等等.本篇博客笔者将为大家介绍Clickhouse中 ...

  3. ClickHouse MergeTree引擎

    Clickhouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎. MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据 ...

  4. PHP数组合并+与array_merge的区别分析 & 对多个数组合并去重技巧

    PHP中两个数组合并可以使用+或者array_merge,但之间还是有区别的,而且这些区别如果了解不清楚项目中会要命的! 主要区别是两个或者多个数组中如果出现相同键名,键名分为字符串或者数字,需要注意 ...

  5. 两个List合并去重

    今天遇到一个合并去重问题,从网上搜索一样总结出来两个比较简单的方法,这里去重是只能取出地址相同的数据,例如:如果两个字符串的值相同但都是单独new出来的这样去不了 @Test public void ...

  6. linux shell文件合并 去重 分割

    1,合并+去重+分割 转载:shell 文件合并,去重,分割 - kakaisgood - 博客园 (cnblogs.com) 第一:两个文件的交集,并集前提条件:每个文件中不得有重复行1. 取出两个 ...

  7. clickhouse核心引擎MergeTree子引擎

    在clickhouse使用过程中,针对数据量和查询场景,MergeTree是最常用也是较为合适的表引擎.针对特定的业务,MergeTree的子引擎可以针对不同的业务而定,但都基于MergeTree引擎 ...

  8. UniqueMergeTree:支持实时更新删除的 ClickHouse 表引擎

    UniqueMergeTree 开发的业务背景 首先,我们看一下哪些场景需要用到实时更新. 我们总结了三类场景: 第一类是业务需要对它的交易类数据进行实时分析,需要把数据流同步到 ClickHouse ...

  9. clickhouse在风控-风险洞察领域的探索与实践

    一.风险洞察平台介绍 以Clickhouse+Flink实时计算+智能算法为核心架构搭建的风险洞察平台, 建立了全面的.多层次的.立体的风险业务监控体系,已支撑欺诈风险.信用风险.企业风险.小微风险. ...

  10. ClickHouse(07)ClickHouse数据库引擎解析

    目录 Atomic 建表语句 特性 Table UUID RENAME TABLES DROP/DETACH TABLES EXCHANGE TABLES ReplicatedMergeTree in ...

随机推荐

  1. active

    rabbitMQ与activeMQ区别 之前的项目中都用到了这两个消息队列 ActiveMq,传统的消息队列,使用Java语言编写.基于JMS(Java Message Service),采用多线程并 ...

  2. NEFUOJ P903字符串去星问题

    Description 有一个字符串(长度小于100),要统计其中有多少个,并输出该字符串去掉后的新字符串. Input 输入数据有多组,每组1个连续的字符串; Output 在1行内输出该串内有多少 ...

  3. 相同基准点的多个rvt BIM模型数据配准后位置有错位偏差问题处理

    场景:提供的bim模型数据包含多个rvt格式数据,这些数据具有相同的基准点,如: 在使用ArcGIS Pro处理了其中两份rvt格式数据(建筑和给排水),发布后在前端展示发现数据错位: 红色管线的给排 ...

  4. 你不得不了解的CSS数据类型

    在我之前的开发中,CSS对于我来说,要用什么找什么,对CSS的了解并不算深入:在我刚开始深入学习CSS时,第一个遇到的就是CSS数据类型,我听说过JS.TS的数据类型,CSS怎么也有数据类型?但是随着 ...

  5. What's the best way to read and understand someone else's code?

    Find one thing you know the code does, and trace those actions backward, starting at the end Say, fo ...

  6. 12年经验的大龄程序员,都用什么写 API 文档?

    写代码,程序员不害怕. 写文档,每个程序员都害怕! 为什么? 技术优先,我们更倾向于将技能和精力更多地放在编写代码上,如果 API 工具不好使,不便捷,同步麻烦,测试看不懂,更会大大地打击编写文档的积 ...

  7. mysql迁移:docker迁入迁出mysql

    docker迁出mysql数据库 测试环境: docker服务器 mysql服务器 IP 192.168.163.19 192.168.163.16 操作系统 CentOS7.8 CentOS7.8 ...

  8. Arch Linux配置Java学习环境

    1. JDK JDK8:主流版本 $ sudo pacman -S jdk8-openjdk JDK11:将会是下一个主流版本 $ sudo pacman -S jdk11-openjdk JDK19 ...

  9. Android事件分发-基础原理和场景分析

    作者:京东零售 郭旭锋 1 为什么需要事件分发 和其他平台类似,Android 中 View 的布局是一个树形结构,各个 ViewGroup 和 View 是按树形结构嵌套布局的,从而会出现用户触摸的 ...

  10. 读《mysql是怎样运行的》有感

    最近读了一本书<mysql是怎样运行的>,读完后在大体上对mysql的运行有一定的了解.在以前,我对mysql有以下的为什么: InnoDB中的表空间.段.区和页是什么? redo log ...