题目大意:在数组中找出一些数,使它们的和能被n整除

  这题标签是数学,那我就标题就写数论好了...

  显然如果数组中有n的倍数直接取就行。

  那假设数组中没有n的倍数,把数组中的数求前缀和后全部%n,会得到一堆1~n-1的数(注意没有0,有0直接就可以取这个前缀了),那根据抽屉原理一定有两个相同的数,设这两个相同的数所在的位置为l和r,那么下标在[l+1,r]的这些数的和一定是n的倍数

  记得开LL,我还RE两发QAQ

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
ll n,sum;
ll a[maxn],v[maxn];
void read(ll &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);sum=;
for(int i=;i<=n;i++)
{
read(a[i]);
sum=(sum+a[i])%n;
if(!v[sum])v[sum]=i;
else
{
for(int j=v[sum]+;j<=i;j++)printf("%d %lld\n",j,a[j]);
return ;
}
}
return ;
}

LibreOJ #6220. sum(数论+构造)的更多相关文章

  1. LibreOJ #6220. sum

    二次联通门 : LibreOJ #6220. sum /* LibreOJ #6220. sum 对所有数做一个前缀和 如果某一位模N等于另一位 则他们中间的一段的和一定为N的倍数 自己感悟一下 (M ...

  2. 【LibreOJ】【LOJ】#6220. sum

    [题意]对于n个数,找出一些数使得它们的和能被n整除,输出任意一组方案,n<=10^6. [算法]构造/结论 [题解]引用自:http://www.cnblogs.com/Sakits/p/74 ...

  3. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  4. Codeforces 716C[数论][构造]

    /* CF傻逼构造题 某人要经过n回合游戏,初始分值是2,等级为1. 每次有两种操作 1.无条件,分值加上自己的等级数. 2.当目前的数字是完全平方数并且该数字开方以后是等级数加1的整数倍,那么可以将 ...

  5. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  6. Prefix Product Sequence CodeForces - 487C (数论,构造)

    大意: 构造一个[1,2,...n]的排列, 使得前缀积模n为[0,1,...,n-1]的排列 这种构造都好巧妙啊, 大概翻一下官方题解好了 对于所有>=6的合数$n$, 有$(n-1)! \e ...

  7. sgu 137. Funny Strings 线性同余,数论,构造 难度:3

    137. Funny Strings time limit per test: 0.25 sec. memory limit per test: 4096 KB Let's consider a st ...

  8. [bzoj] 1257 余数之和sum || 数论

    原题 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值,其中k mod i表示k除以i的余数. \(\sum^n_{i=1} ...

  9. *P2398 GCD SUM[数论]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...

随机推荐

  1. 手机APP测试如何进行兼容性测试?

    Android App兼容性测试是一个比较重要的App评价内容,实际上兼容性测试不仅仅和测试人员相关,在开发阶段就应当着重考虑,因为兼容性问题是除了实现App本身要求的功能后,必须要关注.而且至关重要 ...

  2. TPO-16 C1 Reserve the room for a rehearsal

    TPO-16 C1 Reserve the room for a rehearsal 第 1 段 1.Listen to a conversation between a Student and a ...

  3. jQuery筛选器及对DOM修改(学习笔记)

    1.jQuery筛选器 注意:请先在管理Nuget程序包中查找jQuery包,并安装.也可以在jQuery官网下载. 实现: <!DOCTYPE html> <html xmlns= ...

  4. [CodeForce721C]Journey

    题目描述 Recently Irina arrived to one of the most famous cities of Berland - the Berlatov city. There a ...

  5. python爬虫基础之一(爬淘宝)

    没想到python如此强大, 今天看一会视频学会了一段python爬虫 这就是我今天学到的内容爬去淘宝网关于书包的一些信息,包括价格, #coding=utf-8 import requests#导入 ...

  6. leetcode-三数之和(java)

     三数之和     给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可 ...

  7. Window下部署MySql数据库

    官网下载地址:https://dev.mysql.com/downloads/mysql/,MySQL Community(社区版) Server 5.7.21,下载完毕后,解压文件. (1)在mys ...

  8. Python3 Tkinter-Checkbutton

    1.多选按钮创建 from tkinter import * root=Tk() Checkbutton(root,text='python').pack() root.mainloop() 2.绑定 ...

  9. 头文件#ifndef #define #endif使用

    想必很多人都看过“头文件中的 #ifndef #define #endif 防止该头文件被重复引用”.但是是否能理解“被重复引用”是什么意思?是不能在不同的两个文件中使用include来包含这个头文件 ...

  10. 有关c#的学习笔记整理与心得

    [ 塔 · 第 一 条 约 定 ] 整理c#:Array Arraylist List Hashtable Dictionary Stack Queue等 Array 的容量是固定的,而 ArrayL ...