1011: [HNOI2008]遥远的行星

Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge

Submit: 5058  Solved: 1888

[Submit][Status][Discuss]

Description

  直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=

Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行星都只受到距离遥远的行星的作用。请计算每颗行星的受力

,只要结果的相对误差不超过5%即可.

Input

  第一行两个整数N和A. 1<=N<=10^5.0.01< a < =0.35,接下来N行输入N个行星的质量Mi,保证0<=Mi<=10^7

Output

  N行,依次输出各行星的受力情况

Sample Input

5 0.3

3

5

6

2

4

Sample Output

0.000000

0.000000

0.000000

1.968750

2.976000

HINT

  精确结果应该为0 0 0 2 3,但样例输出的结果误差不超过5%,也算对

这题的正解也着实让我吓跪。。。

首先对于i,ansi = ∑M[i] * M[j]/(i - j)

直接模拟O(a n^2)铁定T

我们观察题目,样例为何不直接输出整数呢?5%这个误差为何如此之大?

是不是在暗示着我们什么?

对,我们不一定要如此严谨地求解

当i足够大时,i - j对于结果的影响就变小了,我们只需大概用个0.5 * a * i来替代j就降一维的复杂度

注意当i比较小时还是要规规矩矩地算

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
double ans,a,M[maxn],sum[maxn];
int n,t;
int main()
{
n = read(); cin>>a;
REP(i,n) scanf("%lf",&M[i]),sum[i] += sum[i - 1] + M[i];
REP(i,n){
t = (int)floor(i * a + 1e-8); ans = 0;
if (i <= 1000){
REP(j,t) ans += M[i] * M[j] / (i - j);
printf("%.6lf\n",ans);
}
else printf("%.6lf\n",M[i] * sum[t] / (i - t / 2));
}
return 0;
}

BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】的更多相关文章

  1. bzoj1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2480  Solved ...

  2. BZOJ1011:[HNOI2008]遥远的行星(乱搞)

    Description 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...

  3. [bzoj1011](HNOI2008)遥远的行星(近似运算)

    Description 直 线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...

  4. 【bzoj1011】[HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 3711  Solved ...

  5. BZOJ 1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2559  Solved ...

  6. 1011: [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2241  Solved ...

  7. BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 4974  Solved ...

  8. [HNOI2008]遥远的行星

    题目描述 直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行 ...

  9. 【BZOJ】1011: [HNOI2008]遥远的行星(近似)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1011 题意:$f[i] = \sum_{j=1}^{i-1} \frac{M[i]M[j]}{i-j ...

随机推荐

  1. js 加密 crypto-js des加密

    js 加密 crypto-js    https://www.npmjs.com/package/crypto-js   DES  举例:   js 引入:   <script src=&quo ...

  2. Entity Framework 基本概念

    概念 LINQ to Entities 一种 LINQ 技术,使开发人员可以使用 LINQ 表达式和 LINQ 标准查询运算符,针对实体数据模型 (EDM) 对象上下文创建灵活的强类型化查询. ESQ ...

  3. Python中变量名里面的下划线

    1 变量名前后都有两个下划线(__X__),表示是系统级变量: 2 变量名前只有一个下划线(_X),表示该变量不是由from module import *导入进来的: 3 变量名前有两个下划线(__ ...

  4. 让我们一起来做最漂亮的Android界面吧!

    让我们一起来做最漂亮的Android界面吧! AndroidiOS产品设计 摘要:如何为Android设备量身定制以打造出最为完美的应用?这是让诸多开发者很是头疼的问题.不同于iOS,Android设 ...

  5. 福大软工1816:beta版本冲刺前准备

    BETA 版冲刺前准备 队名:第三视角 作业链接 组长博客 应作业要求为了更加顺利地开展beta版本的冲刺,上次的alpha版本展示后,我们组对之前开发过程中存在的各种问题进行了全面的讨论,并对其进行 ...

  6. python学习笔记03:python的核心数据类型

    从根本上讲,Python是一种面向对象的语言.它的类模块支持多态,操作符重载和多重继承等高级概念,并且以Python特有的简洁的语法和类型,OOP十分易于使用.Python的语法简单,容易上手. Py ...

  7. LintCode-38.搜索二维矩阵 II

    搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复 ...

  8. 3dContactPointAnnotationTool开发日志(二十)

      为了使工具更人性化,我又在每个status的text上绑了个可以拖拽实现值改变的脚本,但是不知道为啥rotx那个值越过+-90范围后连续修改就会产生抖动的现象,试了很多方法也没能弄好,不过实际用起 ...

  9. SpringData——HelloWorld

    1.背景 最开始了解SpringData的时候,以为他不就是ORM的一种实现方式嘛,还能有什么新的东西.从hibernate到ibatis.mybatis,也许他只不过是spring想整合一个更方便的 ...

  10. centOS 6.5命令方式配置静态IP

    想自己做个centOS玩一下,然后通过FTP访问操作,首先查看是否开启了SSH,命令如下: rpm -qa | grep ssh 这个时候看到的是centOS的ssh已经打开!要是通过FTP工具访问还 ...