可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE。

因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数。

我们不妨不考虑硬币个数的限制。这样可以用完全背包在O(s)的时间求出dp[]数组,表示没有限制的种数。

现在加入每个硬币的限制后,由于容斥原理,答案就是没有限制的种数-第一个硬币的限制种数-第二个硬币限制种数......

如果加入第一个硬币的限制后怎么求呢。就相当于你先把第一个硬币用到刚超过限制,剩下的随便怎么选。此时的种数就是dp[s-(d[1]+1)*c[1]],d[1]表示第一种硬币的限制数,

c[1]表示第一种硬币的币值。 剩下的同理。

之后所以的询问都可以在O(1)的时间求出。

因此总复杂度为O(s+tot).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL dp[N];
int c[], d[]; void init()
{
dp[]=;
FO(i,,) FO(j,c[i],N) dp[j]=dp[j]+dp[j-c[i]];
}
int main ()
{
scanf("%d%d%d%d%d",c,c+,c+,c+,c+);
init();
while (c[]--) {
scanf("%d%d%d%d%d",d,d+,d+,d+,d+);
LL ans=dp[d[]];
FO(i,,) {
int tot=, tmp=;
FO(j,,) if (i&(<<j)) ++tot, tmp+=(d[j]+)*c[j];
if (tmp<=d[]) ans+=((tot&)?-dp[d[]-tmp]:dp[d[]-tmp]);
}
printf("%lld\n",ans);
}
return ;
}

BZOJ 1042 硬币购物(背包DP+容斥原理)的更多相关文章

  1. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  2. 【bzoj1042】[HAOI2008]硬币购物 背包dp+容斥原理

    题解: 计数题 首先考虑容斥 这题很明显加了限制状态就很多 考虑没有限制 显然可以直接dp 然后 我们看一下 容斥 某一个使用>=k张 那么其实就是 f[i-k*c[]] 于是这样就可以做了

  3. 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...

  4. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  5. [BZOJ]1042 硬币购物(HAOI2008)

    失踪OJ回归. 小C通过这道题mark一下容斥一类的问题. Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s ...

  6. BZOJ 1042 硬币购物(完全背包+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...

  7. BZOJ 1042 硬币购物

    先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include< ...

  8. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  9. [bzoj 1042][HAOI2008]硬币购物(用容斥原理弄背包)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1042 分析: 解法很巧妙,用f[i]表示四种硬币A.B.C.D的数量不考虑的情况下弄成 ...

随机推荐

  1. 使用 Linux 下的的logrotate进行日志的切割

    实际生产中,使用一个log文件来记录所有信息的话,一方面,时间过久,就会占用很大的空间:另一方面,就是一个文件记录对于后期日志的查看非常不利.为了解决查看了一下资料,发现linux里面有一个logro ...

  2. XNA+WPF solution worked

    Cory Petosky's website Edit 11/17/2010: While this article's XNA+WPF solution worked when I wrote it ...

  3. JavaScript---复选框全选的多种实现

    <script language=javascript> //第一种方法 function selectall1() {    var a = document.getElementsBy ...

  4. clr via c#读书笔记四:call、callvirt

    1.嵌套类,就是定义在类中的类:嵌套类可以访问外部类的方法.属性.字段而不管访问修饰符的限制,但是外部类只能够访问修饰符为public.internal的嵌套类的字段.方法.属性: 2.CLR如何调用 ...

  5. Python之多进程多线程

    一.多进程与多线程的概念 1.多进程的概念 进程是程序在计算机上的的一次执行活动.当你运行一个程序,你就启动了一个进程.显然,程序是死的(静态的),进程是活的(动态的).进程可以分为系统进程和用户进程 ...

  6. Unbuntu安装RVM

    apt-get install curl #安装rvm curl -L https://get.rvm.io | bash #执行启动 source /home/mafei/.rvm/scripts/ ...

  7. 《绝地求生大逃杀》BE错误怎么办 BE服务未正常运行及安装失败解决方法

    <绝地求生大逃杀>BattlEye Launcher是游戏的反作弊程序,也是启动过程中做容易出现错误的,今天小编带来“爆锤吧务”分享的<绝地求生大逃杀>BE服务未正常运行及安装 ...

  8. android学习十二 配置变化

    1.配置变化会终止当前活动,并重建活动 2.配置变化有    2.1  屏幕方向变化    2.2  语言变化    2.3   插到基座等   3. 配置变化应用程序不会清除,上下文对新活动依然有效 ...

  9. [转]JS私有化的实现——稳妥构造函数

    所谓稳妥对象, 指的是没有公共属性, 而且其方法也不引用this的对象.稳妥对象函数遵循与寄生构造函数类似的模式, 但有两点不同: 一是新创建对象的实例方法不引用this: 二是不使用new操作符调用 ...

  10. 第八模块:算法&设计模式、企业应用 第2章 企业应用工具学习

    第八模块:算法&设计模式.企业应用 第2章 企业应用工具学习