【POJ2728】Desert King(分数规划)
【POJ2728】Desert King(分数规划)
题面
vjudge
翻译:
有\(n\)个点,每个点有一个坐标和高度
两点之间的费用是高度之差的绝对值
两点之间的距离就是欧几里得距离
求一棵生成数,使得单位距离的费用最小
题解
使得\(\sum cost/\sum dis\)最小
这是分数规划问题
二分答案\(K\)
如果\(K\)满足,则有
\(\sum cost-K\sum dis\leq 0\)
定义生成树边权为\(cost-K·dis\)
做最小生成树检查答案即可。
因为是稠密图,使用\(Prim\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define sqr(x) (1.0*(x)*(x))
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,x[MAX],y[MAX],z[MAX];
double dis[MAX];
double len[MAX][MAX],cost[MAX][MAX],g[MAX][MAX];
bool vis[MAX];
bool check(double mid)
{
for(int i=0;i<=n;++i)dis[i]=1e20,vis[i]=false;
dis[1]=0;double tot=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
g[i][j]=cost[i][j]-mid*len[i][j];
for(int i=1;i<=n;++i)
{
int u=0;
for(int j=1;j<=n;++j)if(!vis[j]&&dis[j]<dis[u])u=j;
vis[u]=true;tot+=dis[u];
for(int j=1;j<=n;++j)
if(!vis[j])
dis[j]=min(dis[j],g[u][j]);
}
return tot<=0;
}
int main()
{
while(n=read())
{
for(int i=1;i<=n;++i)x[i]=read(),y[i]=read(),z[i]=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
len[i][j]=sqrt(sqr(x[i]-x[j])+sqr(y[i]-y[j])),cost[i][j]=abs(z[i]-z[j]);
double l=0,r=1e5;
while(r-l>=1e-5)
{
double mid=(l+r)/2;
if(check(mid))r=mid;
else l=mid;
}
printf("%.3f\n",l);
}
return 0;
}
【POJ2728】Desert King(分数规划)的更多相关文章
- POJ2728 Desert King 【最优比率生成树】
POJ2728 Desert King Description David the Great has just become the king of a desert country. To win ...
- poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】
含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解. Desert King Time Limit: 3000MS Memory Li ...
- poj2728 Desert King——01分数规划
题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...
- poj2728 Desert King(最小生成树+01分数规划=最优比率生成树)
题意 n个点完全图,每个边有两个权值,求分数规划要求的东西的最小值. (n<=1000) 题解 心态炸了. 堆优化primT了. 普通的就过了. 我再也不写prim了!!!! 咳咳 最优比率生成 ...
- POJ2728 Desert King (最小生成树、0/1分数规划)
显然的0/1分数规划问题,用二分来解决,检验mid,就用prim算法求最小生成树,看总边权是否大等于0即可验证. 1 #include<bits/stdc++.h> 2 using nam ...
- [POJ2728] Desert King 解题报告(最优比率生成树)
题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...
- POJ2728 Desert King
一道生成树+\(0/1\)分数规划 原题链接 设每条边的距离为\(dis[x]\),两点高度差为\(h[x]\),该图的生成树为\(T\),则题目实际求的就是\(\dfrac{\sum\limits_ ...
- POJ2728 Desert King 最优比率生成树
题目 http://poj.org/problem?id=2728 关键词:0/1分数规划,参数搜索,二分法,dinkelbach 参考资料:http://hi.baidu.com/zzningxp/ ...
- POJ2728 Desert King —— 最优比率生成树 二分法
题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS Memory Limit: 65536K Total Subm ...
- poj2728 Desert King --- 01分数规划 二分水果。。
这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...
随机推荐
- MySQL高级-MySQL安装
1.mysql安装 检查系统是否安装过mysql 查询命令:rpm -qa|grep -i mysql 删除命令:rpm -e RPM软件包名(该名字是上一个命令查出来的名字) 安装命令:rpm -i ...
- leetcode笔记10 Intersection of Two Arrays(求交集)
问题描述: Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, ...
- 获取项目中.txt 文件的内容
package com.fh.controller.ruitai.util; import java.io.BufferedInputStream; import java.io.File; impo ...
- uvaoj 489 - Hangman Judge(逻辑+写代码能力)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- selenium元素定位(三)
使用selenium就不可避免的要提到界面元素定位,通过元素定位来实现一系列的逻辑操作. selenium提供了8中元素定位的方式: id.name.class name.tag name.link ...
- python一标准异常总结大全(非常全)
Python标准异常总结 AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) ...
- 初学Direct X(4)
初学Direct X(4) 本文学着做出一个如下的小游戏 游戏方式是使用键盘控制红色的Bucket收集蓝色的炸弹 1.酝酿一下 现在我已经掌握: 将位图文件加载到内存 绘制位图到buckbuffer ...
- Spring 配置String转Date
操作步骤: 1. 实现 org.springframework.core.convert.converter.Converter 接口 2. 配置 org.springframework.contex ...
- 【WXS数据类型】Date
生成 date 对象需要使用 getDate函数, 返回一个当前时间的对象. var date = getDate(); //返回当前时间对象 属性: 名称 值类型 说明 [Date].constru ...
- javascript常用对象方法
concat:连接产生一个新数组 [1,2].concat([3,4]) >> [1, 2, 3, 4] filter:返回符合条件的一个新数组 [1,2,3,4,5].filte ...