最短路-Bellmanford
简介:
给定一个图和一个源点,求源点到其余点的最短路径,图中有可能存在负权边。
算法步骤
1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。
如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。

经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)

第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。所以这是无限循环的。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
typedef struct Edge //边
{
int u, v;
int cost;
} Edge;
Edge edge[N];
int dis[N], pre[N];
bool Bellman_Ford()
{
int ok;
; i <= nodenum; ++i) //初始化,起点本身赋值为0,其余赋值为最大
dis[i] = (i == original ? : MAX);
; i <= nodenum - ; ++i)
{
ok=;
; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;//这里用来存储路径
ok=;
}
) //优化这里,如果这趟没跟新任何节点就可以直接退出了。
break;
}
; //判断是否含有负权回路
; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
return flag;
}
void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
}
int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);//输入点边起点,一般起点规定为1
pre[original] = original;//为了输出最短路用的,前驱为本身
; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);//有向图
}
if(Bellman_Ford())//如果没有负权
; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
;
}
最短路-Bellmanford的更多相关文章
- 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)
layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...
- 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)
layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...
- 单源最短路——Bellman-Ford算法
1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...
- (模板)hdoj2544(最短路--bellman-ford算法&&spfa算法)
题目链接:https://vjudge.net/problem/HDU-2544 题意:给n个点,m条边,求点1到点n的最短路. 思路: 今天学了下bellman_ford,抄抄模板.dijkstra ...
- SPFA求最短路——Bellman-Ford算法的优化
SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...
- 图论:最短路-Bellman-Ford
我们之前介绍了一种,(最常用的)SPFA算法,SPFA算法是对Bellman-Ford算法的队列优化,用队列替代了Bellman-Ford中的循环检查部分 然后这里我们介绍Bellman-Ford算法 ...
- 最短路--Bellman-Ford
Bellman-Ford 贝尔曼-福特 算法思想 贝尔曼-福特算法(英语:Bellman–Ford algorithm),求解单源最短路径问题的一种算法,由理查德·贝尔曼 和 莱斯特·福特 创立的.它 ...
- 单源最短路 Bellman-Ford算法(有向图)
// 单源最短路问题 // Bellman-Ford算法 // 复杂度O(V*E) //! 可以判断负圈 #include <cstdio> #include <iostream&g ...
- POJ-3259(最短路+Bellman-Ford算法判负圈)
Wormholes POJ-3259 这题是最短路问题中判断是否存在负圈的模板题. 判断负圈的一个关键就是理解:如果在图中不存在从s可达的负圈,最短路径不会经过一个顶点两次.while循环最多执行v- ...
随机推荐
- python读书笔记-《简明python教程》上
1月15日 <简明python教程>上 基本结构: 基础概念+控制流+函数+模块+数据结构+面向对象+I/O+异常+标准库+其他 1.概念 1-0 退出python linux: ...
- 代码Review发现问题
FrmMain.cs中存在问题 1. int i=0 设定为了全局常量且未在类顶部,出现问题时不好查找 i 属于常用临时变量,设定全局变量容易引起混乱 2.定义的全局变量但仅在一处方法中使用,定义全局 ...
- lightoj 1007 - Mathematically Hard 欧拉函数应用
题意:求[a,b]内所有与b互质个数的平方. 思路:简单的欧拉函数应用,由于T很大 先打表求前缀和 最后相减即可 初次接触欧拉函数 可以在素数筛选的写法上修改成欧拉函数.此外本题内存有限制 故直接计算 ...
- Robot Framework Chrome
1. 下载对应版本的chromedriver, 好像都是windows32位的,不过没关系,可以用即可. 2. 将chromedriver放入到chrome的安装路径下,然后将chromrdriver ...
- spoj104 highways 生成树计数(矩阵树定理)
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...
- 51nod 1806 wangyurzee的树
基准时间限制:1 秒 空间限制:131072 KB wangyurzee有n个各不相同的节点,编号从1到n.wangyurzee想在它们之间连n-1条边,从而使它们成为一棵树.可是wangyur ...
- How to write educational schema.
Sometimes, writing such educational schemas could be of much use, and creating such docs can be bene ...
- javascript 事件知识集锦
1.事件委托极其应用 转载的链接: http://www.webhek.com/event-delegate/#comments 2. 解析javascript事件机制 转载链接: http: ...
- Android中TextView设置字体
最近项目中出现把字体设置成宋体,微软雅黑,黑体,楷体等的需求; 度娘发现Android系统默认支持三种字体,分别为:“sans”, “serif”, “monospace",除此之外还可以使 ...
- ubuntu中使用virtualbox遇到Kernel driver not installed (rc=-1908)错误
百度之后得到解决,再此做个笔记 错误提示 Kernel driver not installed (rc=-1908) The VirtualBox Linux kernel driver (vbox ...