简介:

给定一个图和一个源点,求源点到其余点的最短路径,图中有可能存在负权边。

算法步骤

1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0; 
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次) 
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。

如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。

经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)

第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。所以这是无限循环的。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
typedef struct Edge //边
{
    int u, v;
    int cost;
} Edge;
Edge edge[N];
int dis[N], pre[N];
bool Bellman_Ford()
{
    int ok;
    ; i <= nodenum; ++i) //初始化,起点本身赋值为0,其余赋值为最大
        dis[i] = (i == original ?  : MAX);
    ; i <= nodenum - ; ++i)
    {
        ok=;
        ; j <= edgenum; ++j)
            if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反)
            {
                dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
                pre[edge[j].v] = edge[j].u;//这里用来存储路径
                ok=;
            }
        ) //优化这里,如果这趟没跟新任何节点就可以直接退出了。
            break;
    }
    ; //判断是否含有负权回路
    ; i <= edgenum; ++i)
        if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
        {
            flag = ;
            break;
        }
    return flag;
}
void print_path(int root) //打印最短路的路径(反向)
{
    while(root != pre[root]) //前驱
    {
        printf("%d-->", root);
        root = pre[root];
    }
    if(root == pre[root])
        printf("%d\n", root);
}

int main()
{
    scanf("%d%d%d", &nodenum, &edgenum, &original);//输入点边起点,一般起点规定为1
    pre[original] = original;//为了输出最短路用的,前驱为本身
    ; i <= edgenum; ++i)
    {
        scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);//有向图
    }
    if(Bellman_Ford())//如果没有负权
        ; i <= nodenum; ++i) //每个点最短路
        {
            printf("%d\n", dis[i]);
            printf("Path:");
            print_path(i);
        }
    else
        printf("have negative circle\n");
    ;
}

最短路-Bellmanford的更多相关文章

  1. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  2. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  3. 单源最短路——Bellman-Ford算法

    1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...

  4. (模板)hdoj2544(最短路--bellman-ford算法&&spfa算法)

    题目链接:https://vjudge.net/problem/HDU-2544 题意:给n个点,m条边,求点1到点n的最短路. 思路: 今天学了下bellman_ford,抄抄模板.dijkstra ...

  5. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  6. 图论:最短路-Bellman-Ford

    我们之前介绍了一种,(最常用的)SPFA算法,SPFA算法是对Bellman-Ford算法的队列优化,用队列替代了Bellman-Ford中的循环检查部分 然后这里我们介绍Bellman-Ford算法 ...

  7. 最短路--Bellman-Ford

    Bellman-Ford 贝尔曼-福特 算法思想 贝尔曼-福特算法(英语:Bellman–Ford algorithm),求解单源最短路径问题的一种算法,由理查德·贝尔曼 和 莱斯特·福特 创立的.它 ...

  8. 单源最短路 Bellman-Ford算法(有向图)

    // 单源最短路问题 // Bellman-Ford算法 // 复杂度O(V*E) //! 可以判断负圈 #include <cstdio> #include <iostream&g ...

  9. POJ-3259(最短路+Bellman-Ford算法判负圈)

    Wormholes POJ-3259 这题是最短路问题中判断是否存在负圈的模板题. 判断负圈的一个关键就是理解:如果在图中不存在从s可达的负圈,最短路径不会经过一个顶点两次.while循环最多执行v- ...

随机推荐

  1. python读书笔记-《简明python教程》上

    1月15日 <简明python教程>上 基本结构: 基础概念+控制流+函数+模块+数据结构+面向对象+I/O+异常+标准库+其他   1.概念 1-0    退出python linux: ...

  2. 代码Review发现问题

    FrmMain.cs中存在问题 1. int i=0 设定为了全局常量且未在类顶部,出现问题时不好查找 i 属于常用临时变量,设定全局变量容易引起混乱 2.定义的全局变量但仅在一处方法中使用,定义全局 ...

  3. lightoj 1007 - Mathematically Hard 欧拉函数应用

    题意:求[a,b]内所有与b互质个数的平方. 思路:简单的欧拉函数应用,由于T很大 先打表求前缀和 最后相减即可 初次接触欧拉函数 可以在素数筛选的写法上修改成欧拉函数.此外本题内存有限制 故直接计算 ...

  4. Robot Framework Chrome

    1. 下载对应版本的chromedriver, 好像都是windows32位的,不过没关系,可以用即可. 2. 将chromedriver放入到chrome的安装路径下,然后将chromrdriver ...

  5. spoj104 highways 生成树计数(矩阵树定理)

    https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...

  6. 51nod 1806 wangyurzee的树

    基准时间限制:1 秒 空间限制:131072 KB    wangyurzee有n个各不相同的节点,编号从1到n.wangyurzee想在它们之间连n-1条边,从而使它们成为一棵树.可是wangyur ...

  7. How to write educational schema.

    Sometimes, writing such educational schemas could be of much use, and creating such docs can be bene ...

  8. javascript 事件知识集锦

    1.事件委托极其应用 转载的链接:  http://www.webhek.com/event-delegate/#comments 2. 解析javascript事件机制 转载链接:    http: ...

  9. Android中TextView设置字体

    最近项目中出现把字体设置成宋体,微软雅黑,黑体,楷体等的需求; 度娘发现Android系统默认支持三种字体,分别为:“sans”, “serif”, “monospace",除此之外还可以使 ...

  10. ubuntu中使用virtualbox遇到Kernel driver not installed (rc=-1908)错误

    百度之后得到解决,再此做个笔记 错误提示 Kernel driver not installed (rc=-1908) The VirtualBox Linux kernel driver (vbox ...