Map Reduce Application(Join)
We are going to explain how join works in MR , we will focus on reduce side join and map side join.
Reduce Side Join
Assuming we have 2 datasets , one is user information(id, name...) , the other is comments made by users(user id, content, date...). We want to join the 2 datasets to select the username and comment they posted. So, this is a typical join example. You can implement all types of join including innter join/outer join/full outer join... As the name indicates, the join is done in reducer.
- We use 2/n mappers for each dataset(table in RDBMS). So, we set this with code below.
MultipleInputs.addInputPath(job,filePath,TextInputFormat.class,UserMapper.class)
MultipleInputs.addInputPath(job,filePath,TextInputFormat.class,CommentsMapper.class)
3 ....
4 MultipleInputs.addInputPath(job,filePath,TextInputFormat.class,OtherMapper.class)
.... - In each mapper, we just need to output the key/value pairs as the job is most done in reducer. In reduce function, when it iterators the values for a given key, reduce function needs to know the value is from which dataset to perform the join. Reducer itself may not be able to distinguish which value is from which mapper(UserMapper or CommentsMapper) for a given key. So, in the map function, we have a chance to mark the value like prefix the value with the mapper name something like that.
outkey.set(userId);
//mark this value so reduce function knows
outvalue.set("UserMapper"+value.toString);
context.write(outkey,outvalue) - In reducer, we get the join type from configuration, perform the join. there can be multiple reducers and with multiple threads.
public void setup(Context context){
joinType = context.getConfiguration().get("joinType");
}
public void reduce(Text text, Iterable<Text> values, Context context)
throws Exception {
listUser.clear();
listComments.clear();
for (Text t: values){
if(isFromUserMapper(t)){
listUser.add(realContent(t));
}else if (isFromCommentsMapper(t)){
listUser.add(realContent(t));
}
}
doJoin(context);
}
private void doJoin(Context context) throws Exception{
if (joinType.equals("inner")){
if(both are not empty){
for (Text user:listUser){
for (Text comm: listComments){
context.write(user,comm);
}
}
}
}else if (){
}.....
}

In reducer side join, all data will be sent to reducer side, so, the overall network bandwith is required.
Map Side Join/Replicated Join
As the name indicates , the join operation is done in map side . So, there is no reducer. It is very suitable for join datasets which has only 1 large dataset and others are small dataset and can be read into small memory in a single machine. It is faster than reduce side join (as no reduce phase, no intermediate output, no network transfer)


We still use the sample example that is to join user(small) and comments(large) datasets. How to implement it?
- Set the number of reduce to 0.
job.setNumReduceTasks(0);
- Add the small datasets to hadoop distribute cache.The first one is deprecated.
DistributedCache.addCacheFile(new Path(args[]).toUri(),job.getConfiguration)
job.addCacheFile(new Path(filename).toUri());
- In mapper setup function, get the cache by code below. The first one is deprecated. Read the file and put the the key / value in an instance variable like HashMap. This is single thread, so it is safe.
Path[] localPaths = context.getLocalCacheFiles();
URI[] uris = context.getCacheFiles()
- In the mapper function, since, you have the entire user data set in the HashMap, you can try to get the key(comes from the split of comment dataset) from the HashMap. If it exists, you get a match. Because only one split of comments dataset goes into each mapper task, you can only perform an inner join or a left outer join.
What is Hadoop Distributed Cache?
"DistributedCache is a facility provided by the Map-Reduce framework to cache files needed by applications. Once you cache a file for your job, hadoop framework will make it available on(or broadcast to) each and every data nodes (in file system, not in memory) where you map/reduce tasks are running. Then you can access the cache file as local file in your Mapper Or Reducer job. Now you can easily read the cache file and populate some collection (e.g Array, Hashmap etc.) in your code" The cache will be removed once the job is done as they are temporary files.
The size of the cache can be configured in mapred-site.xml.
How to use Distributed Cache(the API has changed)?
- Add cache in driver.
Note the # sign in the URI. Before it, you specify the absolute data path in HDFS. After it, you set a name(symlink) to specify the local file path in your mapper/reducer.
job.addCacheFile(new URI("/user/ricky/user.txt#user"));
job.addCacheFile(new URI("/user/ricky/org.txt#org"));
return job.waitForCompletion(true) ? 0 : 1;
- Read cache in your task(mapper/reduce), probably in setup function.
@Override
protected void setup(
Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
if (context.getCacheFiles() != null
&& context.getCacheFiles().length > 0) { File some_file = new File("user");
File other_file = new File("org");
}
super.setup(context);
}
Reference:
https://www.youtube.com/user/pramodnarayana/videos
https://stackoverflow.com/questions/19678412/number-of-mappers-and-reducers-what-it-means
Map Reduce Application(Join)的更多相关文章
- Map Reduce Application(Partitioninig/Binning)
Map Reduce Application(Partitioninig/Group data by a defined key) Assuming we want to group data by ...
- Map Reduce Application(Top 10 IDs base on their value)
Top 10 IDs base on their value First , we need to set the reduce to 1. For each map task, it is not ...
- Map/Reduce中Join查询实现
张表,分别较data.txt和info.txt,字段之间以/t划分. data.txt内容如下: 201001 1003 abc 201002 1005 def 201003 ...
- hadoop 多表join:Map side join及Reduce side join范例
最近在准备抽取数据的工作.有一个id集合200多M,要从另一个500GB的数据集合中抽取出所有id集合中包含的数据集.id数据集合中每一个行就是一个id的字符串(Reduce side join要在每 ...
- hadoop的压缩解压缩,reduce端join,map端join
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...
- HIVE 的MAP/REDUCE
对于 JOIN 操作: Map: 以 JOIN ON 条件中的列作为 Key,如果有多个列,则 Key 是这些列的组合 以 JOIN 之后所关心的列作为 Value,当有多个列时,Value 是这些列 ...
- mapreduce: 揭秘InputFormat--掌控Map Reduce任务执行的利器
随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义Inp ...
- 基于python的《Hadoop权威指南》一书中气象数据下载和map reduce化数据处理及其可视化
文档内容: 1:下载<hadoop权威指南>中的气象数据 2:对下载的气象数据归档整理并读取数据 3:对气象数据进行map reduce进行处理 关键词:<Hadoop权威指南> ...
- Reduce Side Join实现
关于reduce边join,其最重要的是使用MultipleInputs.addInputPath这个api对不同的表使用不同的Map,然后在每个Map里做一下该表的标识,最后到了Reduce端再根据 ...
随机推荐
- c/c++面试指导---c语法总结
任何一门学科或者专业在学习的过程中都要把握总结框架,大家在面试c/c++职位过程中要应对各种企业的面试,回答企业面试官的各种技术问题.如何应对各种各样的关于c/c++的企业面试题目,从各种繁杂的题目中 ...
- 浅析MySQL 5.7组复制技术(Group Replication)
Group Replication is know as an up to date HA(High Availablity) solution which is supported in ...
- tornado用户指引(三)------tornado协程使用和原理(二)
Python3.5 async和await async和await是python3.5引入的2个新的关键字(用这两个关键字编写的函数也称之为"原生协程"). 从tornado4. ...
- 离不开的微服务架构,脱不开的RPC细节(值得收藏)!!!
服务化有什么好处? 服务化的一个好处就是,不限定服务的提供方使用什么技术选型,能够实现大公司跨团队的技术解耦,如下图所示: 服务A:欧洲团队维护,技术背景是Java 服务B:美洲团队维护,用C++实现 ...
- Redis(六):Redis的事务
Redis的事务目录导航: 是什么 能干嘛 怎么玩 3阶段 3特性 是什么 可以一次执行多个命令,本质是一组命令的集合.一个事务中的所有命令都会序列化,按顺序地串行化执行而不会被其它命令插入,不许加塞 ...
- yii 后台配置独立子域名方法
我这里安装的是宝塔面板集成的环境WNMP,官网上虽然也有,但是写的并不明确,对我这种用YII的新手来说也很头疼,折腾了半天终于弄好,记录一下. 首先解析一个子域名:back.domain.com: 用 ...
- Java常用容器对比
ArrayList与Vector ArrayList和Vector内部都是由数组实现的,数组实现的优点就是支持元素的随机访问(O(1)),但是在对元素进行插入和删除操作时,需要向后或向前移动数组,这样 ...
- MapReduce序列化及分区的java代码示例
概述 序列化(Serialization)是指把结构化对象转化为字节流. 反序列化(Deserialization)是序列化的逆过程.把字节流转为结构化对象. 当要在进程间传递对象或持久化对象的时候, ...
- Linux计划任务crontab设置详解
crontab文件的格式: minute hour day month weekday username command minute:分,值为0-59 hour:小时,值为1-23 day:天,值为 ...
- java对象转map
/** * java对象转map * @param obj * @return * @throws IllegalAccessException * @throws IllegalArgumentEx ...