We are going to explain how join works in MR , we will focus on reduce side join and map side join.

Reduce Side Join

Assuming we have 2 datasets , one is user information(id, name...) , the other is comments made by users(user id, content, date...). We want to join the 2 datasets to select the username and comment they posted. So, this is a typical join example.  You can implement all types of join including innter join/outer join/full outer join... As the name indicates, the join is done in reducer.

  • We use 2/n mappers for each dataset(table in RDBMS). So, we set this with code below.

     MultipleInputs.addInputPath(job,filePath,TextInputFormat.class,UserMapper.class)
    MultipleInputs.addInputPath(job,filePath,TextInputFormat.class,CommentsMapper.class)
    3 ....
    4 MultipleInputs.addInputPath(job,filePath,TextInputFormat.class,OtherMapper.class)
    ....
  • In each mapper, we just need to output the key/value pairs as the job is most done in reducer.  In reduce function, when it iterators the values for a given key, reduce function needs to know the value is from which dataset to perform the join. Reducer itself may not be able to distinguish which value is from which mapper(UserMapper or CommentsMapper) for a given key. So, in the map function, we have a chance to mark the value like prefix the value with the mapper name  something like that.
     outkey.set(userId);
    //mark this value so reduce function knows
    outvalue.set("UserMapper"+value.toString);
    context.write(outkey,outvalue)
  • In reducer, we get the join type from configuration, perform the join.  there can be multiple reducers and with multiple threads.
     public void setup(Context context){
    joinType = context.getConfiguration().get("joinType");
    }
    public void reduce(Text text, Iterable<Text> values, Context context)
    throws Exception {
    listUser.clear();
    listComments.clear();
    for (Text t: values){
    if(isFromUserMapper(t)){
    listUser.add(realContent(t));
    }else if (isFromCommentsMapper(t)){
    listUser.add(realContent(t));
    }
    }
    doJoin(context);
    }
    private void doJoin(Context context) throws Exception{
    if (joinType.equals("inner")){
    if(both are not empty){
    for (Text user:listUser){
    for (Text comm: listComments){
    context.write(user,comm);
    }
    }
    }
    }else if (){
    }.....
    }

In reducer side join, all data will be sent to reducer side, so, the overall network bandwith is required.

Map Side Join/Replicated Join

As the name indicates , the join operation is done in map side . So, there is no reducer.   It is very suitable for join datasets which has only 1 large dataset and others are small dataset and can be read into small memory in a single machine. It is faster than reduce side join (as no reduce phase, no intermediate output, no network transfer)

We still use the sample example that is to join user(small) and comments(large) datasets. How to implement it?

  • Set the number of reduce to 0.
job.setNumReduceTasks(0);
  • Add the small datasets to hadoop distribute cache.The first one is deprecated.
 DistributedCache.addCacheFile(new Path(args[]).toUri(),job.getConfiguration)
job.addCacheFile(new Path(filename).toUri());
  • In mapper setup function, get the cache by code below. The first one is deprecated. Read the file and put the the key / value in an instance variable like HashMap. This is single thread, so it is safe.
Path[] localPaths = context.getLocalCacheFiles();
URI[] uris = context.getCacheFiles()
  • In the mapper function, since, you have the entire user data set in the HashMap, you can try to get the key(comes from the split of comment dataset) from the HashMap. If it exists, you get a match. Because only one split of comments dataset goes into each mapper task, you can only perform an inner join or a left outer join.

What is Hadoop Distributed Cache?

"DistributedCache is a facility provided by the Map-Reduce framework to cache files needed by applications. Once you cache a file for your job, hadoop framework will make it available on(or broadcast to) each and every data nodes (in file system, not in memory) where you map/reduce tasks are running. Then you can access the cache file as local file in your Mapper Or Reducer job. Now you can easily read the cache file and populate some collection (e.g Array, Hashmap etc.) in your code"  The cache will be removed once the job is done as they are temporary files.

The size of the cache can be configured in mapred-site.xml.

How to use Distributed Cache(the API has changed)?

  • Add cache in driver.
    Note the # sign in the URI. Before it, you specify the absolute data path in HDFS. After it, you set a name(symlink) to specify the local file path in your mapper/reducer.
     job.addCacheFile(new URI("/user/ricky/user.txt#user"));
job.addCacheFile(new URI("/user/ricky/org.txt#org")); return job.waitForCompletion(true) ? 0 : 1;
  • Read cache in your task(mapper/reduce), probably in setup function.
 @Override
protected void setup(
Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
if (context.getCacheFiles() != null
&& context.getCacheFiles().length > 0) { File some_file = new File("user");
File other_file = new File("org");
}
super.setup(context);
}

Reference:

https://www.youtube.com/user/pramodnarayana/videos

https://stackoverflow.com/questions/19678412/number-of-mappers-and-reducers-what-it-means

Map Reduce Application(Join)的更多相关文章

  1. Map Reduce Application(Partitioninig/Binning)

    Map Reduce Application(Partitioninig/Group data by a defined key) Assuming we want to group data by ...

  2. Map Reduce Application(Top 10 IDs base on their value)

    Top 10 IDs base on their value First , we need to set the reduce to 1. For each map task, it is not ...

  3. Map/Reduce中Join查询实现

    张表,分别较data.txt和info.txt,字段之间以/t划分. data.txt内容如下: 201001    1003    abc 201002    1005    def 201003  ...

  4. hadoop 多表join:Map side join及Reduce side join范例

    最近在准备抽取数据的工作.有一个id集合200多M,要从另一个500GB的数据集合中抽取出所有id集合中包含的数据集.id数据集合中每一个行就是一个id的字符串(Reduce side join要在每 ...

  5. hadoop的压缩解压缩,reduce端join,map端join

    hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...

  6. HIVE 的MAP/REDUCE

    对于 JOIN 操作: Map: 以 JOIN ON 条件中的列作为 Key,如果有多个列,则 Key 是这些列的组合 以 JOIN 之后所关心的列作为 Value,当有多个列时,Value 是这些列 ...

  7. mapreduce: 揭秘InputFormat--掌控Map Reduce任务执行的利器

    随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义Inp ...

  8. 基于python的《Hadoop权威指南》一书中气象数据下载和map reduce化数据处理及其可视化

    文档内容: 1:下载<hadoop权威指南>中的气象数据 2:对下载的气象数据归档整理并读取数据 3:对气象数据进行map reduce进行处理 关键词:<Hadoop权威指南> ...

  9. Reduce Side Join实现

    关于reduce边join,其最重要的是使用MultipleInputs.addInputPath这个api对不同的表使用不同的Map,然后在每个Map里做一下该表的标识,最后到了Reduce端再根据 ...

随机推荐

  1. MySQL部分从库上面因为大量的临时表tmp_table造成慢查询

    背景描述 # Time: :: # User@Host: **[**] @ [**] Id: ** # Killed: # Query_time: Rows_examined: Rows_affect ...

  2. python装饰器内获取函数有用信息方法

    装饰器内获取函数有用信息方法 .__doc__用于得到函数注释信息 .__name_用于得到函数名 在函数引用装饰器的时候,函数名会变为装饰器内部执行该函数的名字,所有在直接执行函数名加.__doc_ ...

  3. diff命令--比较两个文件的命令

    可以使用 --brief 来比较两个文件是否相同,使用 -c参数来比较这两个文件的详细不同之处,这绝对是判断文件是否被篡改的有力神器,

  4. 跨浏览器实现placeholder效果的jQuery插件

    曾经遇到这样一个问题,处理IE8密码框placeholder属性兼容性.几经周折,这个方案是可以解决问题的. 1.jsp页面引入js插件 <script type="text/java ...

  5. node 版本升级,版本管理,版本切换

    查看node版本 node -v 升级步骤 1,清除node缓存 sudo npm cache clean -f 2,安装n模块 sudo npm install -g n 3,升级到稳定版本 sud ...

  6. 利用GoAccess分析Nginx访问日志

    原文链接:https://blog.csdn.net/yown/article/details/56027112 需求:及时得到线上用户访问日志分析统计结果,以便给开发.测试.运维.运营人员提供决策! ...

  7. 20190120-自定义实现split方法

    1. 实现字符串的split方法Python split() 通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串 思路同自定义实现replace方法类型: 1. ...

  8. Python-入门必备

    ·Python入门必备 @ 交互式编程 交互式编程不需要创建脚本文件,而是直接通过Python解释器的交互模式进来编写代码.下面我们来打开python自带的交互式编程客户端,打印一个hello,wor ...

  9. 『Python基础-5』数字,运算,转换

    『Python基础-5』数字,运算,转换 目录 基本的数字类型 二进制,八进制,十六进制 数字类型间的转换 数字运算 1. 数字类型 Python 数字数据类型用于存储数学上的值,比如整数.浮点数.复 ...

  10. linux静态链接库

    库 库是写好的现有的,成熟的,可以复用的代码.现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常 本质上来说库是一种可执行代码的二进制形式,可以被操作系统载 ...