RTP Tools
RTP Tools (Version 1.20)
https://wiki.wireshark.org/RTP_statistics
Here is a small example:
- Install JMF (JMstudio is included)
- Download rtptools
- Open the RTP capture file with Wireshark
Select the proper UDP and force its decoding as RTP: Menu Analyze >> Decode As... RTP.
Menu Statistics(Wireshark 1.0) or Telephony >> RTP >> Show all streams. Select the one of your interest, and press button Save As... into a "rtpdump" formatted file.
- Start JMstudio
Menu File >> Open RTP Session and insert your local IP address (it didn't work with 127.0.0.1 for me) like this:
- Press button "Open" - now JMstudio waits for the stream
- Open a terminal and type:
user@host$ rtpplay -T -f /path/to/your/captured.rtpdump 192.168.0.23/1234
You should now hear what you've captured. Note:JMstudio does not support every codec, but some commonly used for RTP (worked perfect for me to listen to a captured kphone-session using GSM as codec).
Description
The rtptools distribution consists of a number of small applications that can be used for processing RTP data.
- rtpplay
- Play back RTP sessions recorded by rtpdump
- rtpsend
- Generate RTP packets from textual description, generated by hand or rtpdump
- rtpdump
- Parse and print RTP packets, generating output files suitable for rtpplay and rtpsend
- rtptrans
- RTP translator between unicast and multicast networks; also translates between VAT and RTP formats.
Installation
Sources for a variety of platforms and binaries for Windows are available from http://www.cs.columbia.edu/IRT/rtptools/download.
The RTP tools should compile on any Posix-compliant platform supporting sockets, as well as Windows/NT/95/98/2000 (Win32). They have been tested on SunOS 4.1, SunOS 5.x (Solaris), Linux, NT 4.0, SGI Irix, and HP-UX. Edit the directories and libraries at the top of Makefile and type make. The compiler must support ANSI C: gcc does, Sun's old /usr/ucb/cc does not.
Note: You must use the sun4 architecture for SunOS 4.1.x and sun5 for SunOS 5.x (Solaris). You will get system call errors if you do not.
- For Unix systems, type
- ./configure; make
- To install RTP tools on WIN32 machine, please follow the following steps:
- *.dsp files are project files. *.dsw file and workspace file.
User can open the workspace file and use 'batch compile' to compile all the projects.- In Visual C++ 6.0, open workspace file rtptools.dsw.
- In VC menu Build, use Batch Build to build all the tools.
- All the rtptools will be created under "debug\" directory.
For quite a character, who desire to compile on Borland C++ Builder, please open dump_bcb.bpr, play_bcb.bpr, send_bcb.bpr and trans_bcb.bpr under bcb directory. Only pressing ctr-F9 needed for compilation, and the tool will be generated on the same directory.
General Usage Hints
Network addresses can be either multicast or unicast addresses, unless stated otherwise. They may be specified in dotted-decimal notation (e.g., 224.2.0.1) or as a host name (e.g., lupus.fokus.gmd.de). Port numbers must be given as decimal numbers in the range of 1 to 65535. Network addresses are specified as destination/port/ttl. The time-to-live (ttl) value is optional and only applies to multicast.
For all commands, the flag -h or -? will print a short usage summary.
Unless otherwise noted, input is taken from stdin, and output sent to stdout. The extension .rtp is suggested for files generated in rtpdump -F dump format.
rtpplay
rtpplay [-T] [-v] [-f file] [-p profile] [-s sourceport] [-b begin] [-e end] destination/port[/ttl]
rtpplay reads RTP session data, recorded by rtpdump -F dump from either the file or stdin, if file is not specified, sending it to network address destination and port port with a time-to-live value of ttl.
If the flag -T is given, the timing between packets corresponds to the arrival timing rather than the RTP timestamps. Otherwise, for RTP data packets, the timing given by the RTP timestamps is used, smoothing interarrival jitter and restoring packet sequence. RTCP packets are still sent with their original timing. This may cause the relative order of RTP and RTCP packets to be changed.
The source port(localport) for outgoing packets can be set with the -s flag. A random port is chosen if this flag is not specified.
The whole file is played unless the begin or end times are specified. Times are measured in seconds and fractions from the beginning of the recording.
The RTP clock frequency is read from the profile file if given; the default profile (RFC 1890) is used if not. The profile file contains lines with two fields each: the first is the numeric payload type, the second the clock frequency. The values read from the profile file are silently ignored if the -T flag is used.
If you want to loop a particular file, it is easiest to put the rtpplay command in a shell script.
The -v flag has rtpplay display the packets generated on stdout.
rtpplay uses the hsearch (3C) library, which may not be available on all operating systems.
rtpdump
rtpdump [-F format] [-t duration] [-x bytes] [-f file] [-o outputfile] address/port
rtpdump listens on the address and port pair for RTP and RTCP packets and dumps a processed version to outputfile if specified or stdout otherwise.
If file is specified, the file is used instead of the network address. If no network address is given, file input is expected from stdin. The file must have been recorded using the rtpdump dump format.
The recording duration is measured in minutes.
From each packet, only the first bytes of the payload are dumped (only applicable for "dump" and "hex" formats).
Supported formats are:
| format | text/binary | description |
|---|---|---|
| dump | binary | dump in binary format, suitable for rtpplay. The format is as follows: The file starts with#!rtpplay1.0 address/port\n
The version number indicates the file format version, not the version of RTP tools used to generate the file. The current file format version is 1.0. This is followed by one binary header (RD_hdr_t) and one RD_packet_t structure for each received packet. All fields are in network byte order. The RTP and RTCP packets are recorded as-is. typedef struct {
|
| header | like "dump", but don't save audio/video payload | |
| payload | only audio/video payload | |
| ascii | text | parsed packets (default), suitable for rtpsend:
844525628.240592 RTP len=176 from=131.136.234.103:46196 v=2 p=0 x=0 |
| hex | like ascii, but with hex dump of payload | |
| rtcp | like ascii, but only RTCP packets | |
| short | RTP or vat data in tabular form: [-]time ts [seq], where a - indicates a set marker bit. The sequence number seq is only used for RTP packets.
844525727.800600 954849217 30667 |
rtpsend
rtpsend sends an RTP packet stream with configurable parameters. This is intended to test RTP features. The RTP or RTCP headers are read from a file, generated by hand, a test program or rtpdump (format "ascii").
rtpsend [-a] [-l] [-s sourceport] [-f file] destination/port[/ttl]
Packets are sent with a time-to-live value ttl.
If data is read from a file instead of stdin, the -l(loop) flag resends the same sequence of packets again and again.
The source port(localport) for outgoing packets can be set with the -s flag. A random port is chosen if this flag is not specified.
If the -a flag is specified, rtpsend includes a router alert IP option in RTCP packets. This is used by the YESSIR resource reservation protoccol.
The file file contains the description of the packets to be sent. Within the file, each entry starts with a time value, in seconds, relative to the beginning of the trace. The time value must appear at the beginning of a line, without white space. Within an RTP or RTCP packet description, parameters may appear in any order, without white space around the equal sign. Lines are continued with initial white space on the next line. Comment lines start with #. Strings are enclosed in quotation marks.
<time> RTP
v=<version>
p=<padding>
x=<extension>
m=<marker>
pt=<payload type>
ts=<time stamp>
seq=<sequence number>
ssrc=<SSRC>
cc=<CSRC count>
csrc=<CSRC>
data=<hex payload>
ext_type=<type of extension>
ext_len=<length of extension header>
ext_data=<hex extension data>
len=<packet size in bytes(including header)>
<time> RTCP (SDES v=<version>
(src=<source> cname="..." name="...")
(src=<source> ...)
)
(SR v=<version>
ssrc=<SSRC of data source>
p=<padding>
count=<number of sources>
len=<length>
ntp=<NTP timestamp>
psent=<packet sent>
osent=<octets sent>
(ssrc=<SSRC of source>
fraction=<loss fraction>
lost=<number lost>
last_seq=<last sequence number>
jit=<jitter>
lsr=<last SR received>
dlsr=<delay since last SR>
)
)
rtptrans
rtptrans [host]/port[/ttl] [host]/port[/ttl] [...]
rtptrans RTP/RTCP packets arriving from one of the addresses to all other addresses. Addresses can be a multicast or unicast. TTL values for unicast addresses are ignored. (Actually, doesn't check whether packets are RTP or not.)
Additionally, the translator can translate VAT packets into RTP packets. VAT control packets are translated into RTCP SDES packets with a CNAME and a NAME entry. However, this is only intended to be used in the following configuration: VAT packets arriving on a multicast connection are translated into RTP and sent over a unicast link. RTP packets are not (yet) translated into VAT packets and and all packets arriving on unicast links are not changed at all. Therefore, currently mainly the following topology is supported: multicast VAT -> translator -> unicast RTP; and on the way back it should lokk like this multicast VAT <- translator <- unicast VAT. This means that the audio agent on the unicast link should be able use both VAT and RTP.
Authors
The rtptools were written by Henning Schulzrinne, with enhancements by Ping Pan and Akira Tsukamoto. rtptrans was written by Dorgham Sisalem and enhanced by Steve Casner.
RTP Tools的更多相关文章
- A Study of WebRTC Security
转自:http://webrtc-security.github.io/ A Study of WebRTC Security Abstract Web Real-Time Communication ...
- VOIP开源项目源码地址
http://blog.csdn.net/hwz119/article/details/1781482 VoIP bookmarks from Klaus Darilion Below you ...
- 自己动手写RTP服务器——关于RTP协议
转自:http://blog.csdn.net/baby313/article/details/7353605 本文会带领着你一步步动手实现一个简单的RTP传输服务器,旨在了解RTP流媒体传输协议以及 ...
- 【NS2仿真】RTP协议安装
来自: http://personales.upv.es/fboronat/Research/NS2_RTP/NS2_RTP_RTCP_module.htm 文件:http://pan.baidu.c ...
- H.264视频的RTP荷载格式
Status of This Memo This document specifies an Internet standards track protocol for the Internet ...
- 自己写RTPserver——大约RTP协议
自己写RTPserver--大约RTP协议 本文将带领你一步一步地实现一个简单的手RTP变速器server,旨在了解RTP流媒体传输协议以及有关多媒体编解码器的一些知识. RTP协议的必备知识 要动手 ...
- rtp header
rtp协议基于udp传输,流媒体音视频数据被封装在rtp中,通过rtp协议进行实时的传输. 一.rtp协议头格式 The RTP header has a minimum size of 12 byt ...
- 流媒体协议之RTP详解20170921
1.RTP介绍 实时传输协议RTP(Real-time Transport Protocol)是一个网络传输协议,它是由IETF的多媒体传输工作小组1996年在RFC 1889中公布的,后在RFC35 ...
- RTP协议学习
RTP协议是承载在UDP协议之上的应用协议 http://blog.csdn.net/chen495810242/article/details/39207305 http://blog.51cto. ...
随机推荐
- Codeforces 713A. Sonya and Queries
题目链接:http://codeforces.com/problemset/problem/713/A 题意: Sonya 有一个可放置重复元素的集合 multiset, 初始状态为空, 现给予三种类 ...
- js判断上传图片宽高及文件大小
<input id="file" type="file"> <input id="Button1" type=" ...
- go chapter 4 - 不定长参数
https://www.cnblogs.com/chase-wind/p/5644838.html 空接口可以指向任何数据对象,所以可以使用interface{}定义任意类型变量,同时interfac ...
- Spring MVC源码——Root WebApplicationContext
目录 Spring MVC源码--Root WebApplicationContext 上下文层次结构 Root WebApplicationContext 初始化和销毁 ContextLoaderL ...
- 密码统计分析工具pipal
密码统计分析工具pipal pipal是Kali Linux提供的一款密码统计分析工具.该工具可以对一个密码字典的所有密码进行统计分析.它会统计最常用的密码.最常用的基础词语.密码长度占比.构成字 ...
- 渗透脚本快速生成工具Intersect
渗透脚本快速生成工具Intersect 当渗透人员获取目标系统的执行权限,往往需要编写相应的脚本,实现更多的渗透操作.Kali Linux提供一款Python脚本快速生成工具Intersect.该 ...
- About 分块
分块的的复杂度是带根号的.... 然后,它是一种暴力算法 简单来说就是优化过的暴力 分块算法会对一个序列(长度为N)进行划分,每一块最多有K个元素,这样就会分为N/K块: 一般K取sqrt(N),那么 ...
- JDK源码学习笔记——Integer
一.类定义 public final class Integer extends Number implements Comparable<Integer> 二.属性 private fi ...
- Problem E: 零起点学算法97——进制转换
#include<stdio.h> int main(){ ]; while(scanf("%d%d",&n,&r)!=EOF){ ,i=; ){ fl ...
- HDU 5638 Toposort 拓扑排序 优先队列
Toposort 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5638 Description There is a directed acycli ...
