Link:

BZOJ 2427 传送门

Solution:

只看样例的话会以为是裸的树形$dp$……

但实际上题目并没有说明恰好仅有一个物品没有依赖项

因此原图可能由是由多棵树与多个图组成的

先跑一遍$tarjan$求出每个图中的$SCC$,缩点将原图转化为森林

再设置一个根,将森林转换成一棵树$dp$即可:$dp[i][j]=max\{ dp[i][k]+dp[son[i]][j-k]\}$

为了保证依赖条件满足,每棵子树的根都必须要选择,因此返回前还要再刷一遍:$dp[i][j]=dp[i][j-w_i]+v_i$

Tip:$dp$时要注意$k$也要逆序枚举,因为$w_i$可能为0

Code:

#include <bits/stdc++.h>

using namespace std;
const int MAXN=;
struct edge{int nxt,to;}e[MAXN<<];
stack<int> st;
int f[MAXN],head[MAXN],in[MAXN],S;
int instack[MAXN],vis[MAXN],col[MAXN],dfn[MAXN],low[MAXN];
int n,m,x,dp[MAXN][MAXN],w[MAXN],v[MAXN],sw[MAXN],sv[MAXN],tot,cnt,idx; void add_edge(int from,int to)
{e[++tot].nxt=head[from];e[tot].to=to;head[from]=tot;} void tarjan(int x)
{
dfn[x]=low[x]=++idx;
instack[x]=vis[x]=true;st.push(x);
for(int i=head[x];i;i=e[i].nxt)
{
if(!vis[e[i].to])
tarjan(e[i].to),low[x]=min(low[x],low[e[i].to]);
else if(instack[e[i].to])
low[x]=min(low[x],low[e[i].to]);
}
if(dfn[x]==low[x])
{
int t=-;cnt++;
while(t!=x)
{
t=st.top();st.pop();
instack[t]=false;col[t]=cnt;
sw[cnt]+=w[t];sv[cnt]+=v[t];
}
}
} void dfs(int x,int anc)
{
for(int i=head[x];i;i=e[i].nxt)
{
if(e[i].to==anc) continue;
dfs(e[i].to,x);
for(int j=m-sw[x];j>=;j--)
for(int k=j;k>=;k--)//k也要保持逆序
dp[x][j]=max(dp[x][j],dp[x][k]+dp[e[i].to][j-k]);
}
for(int j=m;j>=;j--)
if(j>=sw[x]) dp[x][j]=dp[x][j-sw[x]]+sv[x];
else dp[x][j]=;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&w[i]);
for(int i=;i<=n;i++) scanf("%d",&v[i]);
for(int i=;i<=n;i++)
{
scanf("%d",&f[i]);
if(f[i]) add_edge(f[i],i);
} for(int i=;i<=n;i++)//原图不一定连通
if(!vis[i]) tarjan(i); tot=;S=cnt+;
memset(head,,sizeof(head));
for(int i=;i<=n;i++)
if(f[i]&&col[i]!=col[f[i]])
add_edge(col[f[i]],col[i]),in[col[i]]++;
for(int i=;i<=cnt;i++)//建立根
if(!in[i]) add_edge(S,i); dfs(S,);
printf("%d",dp[S][m]); return ;
}

[BZOJ 2427] 软件安装的更多相关文章

  1. bzoj 2427 软件安装 - Tarjan - 树形动态规划

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  2. BZOJ 2427 软件安装(强连通分量+树形背包)

    题意:现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现在有 ...

  3. bzoj 2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  4. BZOJ 2427 [HAOI2010]软件安装 | 这道树形背包裸题严谨地证明了我的菜

    传送门 BZOJ 2427 题解 Tarjan把环缩成点,然后跑树形背包即可. 我用的树形背包是DFS序上搞的那种. 要注意dp数组初始化成-INF! 要注意dp顺推的时候也不要忘记看数组是否越界! ...

  5. bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp

    [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2029  Solved: 811[Submit][Status][Dis ...

  6. BZOJ 2427: [HAOI2010]软件安装 tarjan + 树形背包

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  7. 【BZOJ-2427】软件安装 Tarjan + 树形01背包

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 960  Solved: 380[Submit][Status ...

  8. 【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)

    [BZOJ2427][HAOI2010]软件安装(动态规划,Tarjan) 题面 BZOJ 洛谷 题解 看到这类题目就应该要意识到依赖关系显然是可以成环的. 注意到这样一个性质,依赖关系最多只有一个, ...

  9. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

随机推荐

  1. 如何设计一个优雅健壮的Android WebView?(下)

    转:如何设计一个优雅健壮的Android WebView?(下) 前言 在上文<如何设计一个优雅健壮的Android WebView?(上)>中,笔者分析了国内WebView的现状,以及在 ...

  2. java 错误: 找不到或无法加载主类解决方法

    1.配置好jdk与jre环境变量路径 https://www.cnblogs.com/xch-yang/p/7629351.html 2.在编译和运行的时候需要注意如下格式.

  3. MVC4 AspNet MVC下的Ajax / 使用JQuery做相关的Ajax请求

    源码参考:链接:http://pan.baidu.com/s/1pKhHHMj  密码:mkr4 1:新建-->项目-->Web-->ASP.NET MVC 4 Web 应用程序.命 ...

  4. 理解js中私有变量

    私有变量在js中是个什么概念.当下我的认识是var所定义的变量,实际可以理解为属性和方法,或者单单是临时存储器,不归属任何对象. 一个声明函数: function a(){  var v = &quo ...

  5. 使用yo -v查看yeoman版本号

    使用yo -v无法查看yeoman版本,这是旧版本的方法 新版本使用yo --version即可查看

  6. Override 和 Overload 的含义和区别

    Override 1.方法重写.覆盖: 2.重写是父类与子类之间多态性的一种表现: 3.方法名,参数,返回值相同: 4.存在于子类和父类之间: 5.修饰为final的方法,不能被重写: Overloa ...

  7. gnu app url[web][5星]

    http://www.gnu.org/software/software.zh-cn.html http://linux.chinaunix.net/news/2010/12/07/1175310.s ...

  8. 006 Java并发编程wait、notify、notifyAll和Condition

    原文https://www.cnblogs.com/dolphin0520/p/3920385.html#4182690 Java并发编程:线程间协作的两种方式:wait.notify.notifyA ...

  9. oc 与 swift 之间的桥接文件 (ProjectNmae-Bridging-Header.h) (ProjectNmae-Swift.h)

    oc 与 Swift 是2种不同的语言, oc代码只能写带oc文件里, Swift代码只能写在Swift文件里, 虽然2者不同语言, 但却能互相调用, 不过需要进行一下桥接, 就是下面的2个文件 (P ...

  10. Pretrained models for Pytorch (Work in progress)

    The goal of this repo is: to help to reproduce research papers results (transfer learning setups for ...