BZOJ 2157 旅游(树链剖分+线段树)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2157
【题目大意】
支持修改边,链上查询最大值最小值总和,以及链上求相反数
【题解】
树链剖分,然后线段树维护线段操作即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int INF=~0U>>1;
const int N=20010,M=N<<2;
int a[N];
namespace Segment_Tree{
int tot;
struct node{int l,r,a,b,rev_tag,min_val,max_val,sum;}T[M];
void build(int,int);
void Initialize(int n){
tot=0;
build(1,n);
}
void addtag(int x){
T[x].sum=-T[x].sum;
T[x].max_val=-T[x].max_val;
T[x].min_val=-T[x].min_val;
swap(T[x].min_val,T[x].max_val);
T[x].rev_tag^=1;
}
void pb(int x){
if(T[x].rev_tag){
if(T[x].l)addtag(T[x].l);
if(T[x].r)addtag(T[x].r);
T[x].rev_tag^=1;
}
}
void up(int x){
T[x].sum=T[T[x].l].sum+T[T[x].r].sum;
T[x].max_val=max(T[T[x].l].max_val,T[T[x].r].max_val);
T[x].min_val=min(T[T[x].l].min_val,T[T[x].r].min_val);
}
void build(int l,int r){
int x=++tot;
T[x].a=l;T[x].b=r;T[x].rev_tag=T[x].l=T[x].r=0;
if(l==r){T[x].sum=T[x].min_val=T[x].max_val=a[l];return;}
int mid=(l+r)>>1;
T[x].l=tot+1;build(l,mid);
T[x].r=tot+1;build(mid+1,r);
up(x);
}
void change(int x,int pos,int p){
if(T[x].a==T[x].b){T[x].sum=T[x].min_val=T[x].max_val=p;return;}
if(T[x].rev_tag)pb(x);
int mid=(T[x].a+T[x].b)>>1;
if(mid>=pos&&T[x].l)change(T[x].l,pos,p);
if(mid<pos&&T[x].r)change(T[x].r,pos,p);
up(x);
}
void reverse(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b){addtag(x);return;}
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1;
if(a<=mid)reverse(T[x].l,a,b);
if(b>mid)reverse(T[x].r,a,b);
up(x);
}
int query_sum(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b)return T[x].sum;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=0;
if(a<=mid)res+=query_sum(T[x].l,a,b);
if(b>mid)res+=query_sum(T[x].r,a,b);
return res;
}
int query_min(int x,int a,int b){
//printf("%d %d %d\n",T[x].min_val,a,b);
if(a<=T[x].a&&T[x].b<=b)return T[x].min_val;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=INF;
if(a<=mid)res=min(res,query_min(T[x].l,a,b));
if(b>mid)res=min(res,query_min(T[x].r,a,b));
return res;
}
int query_max(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b)return T[x].max_val;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=-INF;
if(a<=mid)res=max(res,query_max(T[x].l,a,b));
if(b>mid)res=max(res,query_max(T[x].r,a,b));
return res;
}
}
namespace Tree_Chain_Subdivision{
int ed,root,d[N],v[N<<1],vis[N],f[N],g[N<<1];
int nxt[N<<1],size[N],son[N],st[N],en[N],dfn,top[N];
void add_edge(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
void dfs(int x){
size[x]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=f[x]){
f[v[i]]=x,d[v[i]]=d[x]+1;
dfs(v[i]),size[x]+=size[v[i]];
if(size[v[i]]>size[son[x]])son[x]=v[i];
}
}
void dfs2(int x,int y){
if(x==-1)return;
st[x]=++dfn;top[x]=y;
if(son[x])dfs2(son[x],y);
for(int i=g[x];i;i=nxt[i])if(v[i]!=son[x]&&v[i]!=f[x])dfs2(v[i],v[i]);
en[x]=dfn;
}
// 查询x,y两点的lca
int lca(int x,int y){
for(;top[x]!=top[y];x=f[top[x]])if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
return d[x]<d[y]?x:y;
}
// x是y的祖先,查询x到y方向的第一个点
int lca2(int x,int y){
int t;
while(top[x]!=top[y])t=top[y],y=f[top[y]];
return x==y?t:son[x];
}
// 对x到y路径上的点取反操作
void reverse(int x,int y){
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
Segment_Tree::reverse(1,st[top[x]],st[x]);
}if(d[x]<d[y]){int z=x;x=y;y=z;}
Segment_Tree::reverse(1,st[y]+1,st[x]);
}
// 查询x到y路径上的最小值
int query_min(int x,int y){
int res=INF;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=min(res,Segment_Tree::query_min(1,st[top[x]],st[x]));
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=min(res,Segment_Tree::query_min(1,st[y]+1,st[x]));
return res;
}
// 查询x到y路径上的最大值
int query_max(int x,int y){
int res=-INF;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=max(res,Segment_Tree::query_max(1,st[top[x]],st[x]));
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=max(res,Segment_Tree::query_max(1,st[y]+1,st[x]));
return res;
}
// 查询x到y路径上的总和
int query_sum(int x,int y){
int res=0;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=res+Segment_Tree::query_sum(1,st[top[x]],st[x]);
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=res+Segment_Tree::query_sum(1,st[y]+1,st[x]);
return res;
}
void Initialize(){
memset(g,dfn=ed=0,sizeof(g));
memset(v,0,sizeof(v));
memset(nxt,0,sizeof(nxt));
memset(son,-1,sizeof(son));
}
}
int n,m,e[N][3];
char op[5];
int main(){
scanf("%d",&n);
using namespace Tree_Chain_Subdivision;
Initialize();
for(int i=0;i<n-1;i++){
scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]);
e[i][0]++; e[i][1]++;
add_edge(e[i][0],e[i][1]);
add_edge(e[i][1],e[i][0]);
}dfs(1);dfs2(1,1);
for(int i=0;i<n-1;i++){
if(d[e[i][0]]>d[e[i][1]])swap(e[i][0],e[i][1]);
a[st[e[i][1]]]=e[i][2];
}
Segment_Tree::Initialize(n);
scanf("%d",&m);
while(m--){
scanf("%s",op);
if(op[0]=='C'){
int x,y;
scanf("%d%d",&x,&y);
Segment_Tree::change(1,st[e[x-1][1]],y);
}
else if(op[0]=='N'){
int x,y;
scanf("%d%d",&x,&y);
Tree_Chain_Subdivision::reverse(x+1,y+1);
}
else if(op[0]=='S'){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_sum(x+1,y+1));
}
else if(op[1]=='I'){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_min(x+1,y+1));
}
else{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_max(x+1,y+1));
}
}return 0;
}
BZOJ 2157 旅游(树链剖分+线段树)的更多相关文章
- bzoj 2157: 旅游【树链剖分+线段树】
裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...
- BZOJ2157旅游——树链剖分+线段树
题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- BZOJ 3589 动态树 (树链剖分+线段树)
前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
随机推荐
- urllib3使用指南
对比urllib,用urllib3处理http请求十分方便,可以嵌入web服务后端用于访问其它web实例提供的接口 一.安装 pip install urllib3 二.初始化 导入urllib3 i ...
- 微信小程序setData子元素
页面的数据中如果有子元素,如下图nowQuestion中的deleted元素 在小程序的setData中,不能直接用nowQuestion.deleted来设定它的值,而需要再定义一个变量承接 另外, ...
- winform Textbox像百度一下实现下拉显示
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 【HNOI】 c tree-dp
[题目描述]给定一个n个节点的树,每个节点有两个属性值a[i],b[i],我们可以在树中选取一个连通块G,这个连通块的值为(Σa[x])(Σb[x]) x∈G,求所有连通块的值的和,输出答案对1000 ...
- python中的ftplib模块
前言 Python中默认安装的ftplib模块定义了FTP类. ftplib模块相关参数: 加载ftp模块:from ftplib import FTP ftp = FTP()#设置变量ftp.set ...
- parse_str
之前没有遇到过parse_str,其意思就是“把查询字符串解析到变量中”也就是$str会被解析为变量. <?php $data = "a=1&b=2";parse_s ...
- defconfig file 的 位置
Platform MSM8917 MSM8937 defconfig file position Android/kernel/msm-3.18/arch/arm/configs/
- rtems-os-source
http://blog.csdn.net/xpx3216/article/details/5776941 http://tech.hqew.com/fangan_421204 https://gith ...
- 81.Search in Rotated Sorted Array II---二分变形
题目链接 题目大意:与33题类似,只是这里数组中有重复数值. 法一:解法与33题类似,只是这里要处理1,3,1,1,1这种情况,即有重复值时,mid与left和right都相等时,可以采用right- ...
- 12-6 NSArray
原文:http://rypress.com/tutorials/objective-c/data-types/nsarray NSArray NSArray 是 Objective-C中最常用的数组类 ...