keras 入门模型训练
# -*- coding: utf-8 -*-
from keras.models import Sequential
from keras.layers import Dense
from keras.models import load_model
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1) # for reproducibility
X = np.random.rand(200)
np.random.shuffle(X) # randomize the data
Y = X + np.random.normal(0, 0.05, (200,))
X_train, Y_train = X[:160], Y[:160] # first 160 data points
X_test, Y_test = X[160:], Y[160:] # last 40 data points
model = Sequential()
model.add(Dense(output_dim=1, input_dim=1))
model.compile(loss='mse', optimizer='sgd')
print('test before save: ', model.predict(X_test[0:1]))
for step in range(10000):
# cost = model.train_on_batch(X_train, Y_train)
cost = model.fit(X_train, Y_train, nb_epoch=1, batch_size=160)
# save model
model.save('my_model.h5') # HDF5 file, you have to pip3 install h5py if don't have it
del model # deletes the existing model
# load model
model = load_model('my_model.h5')
print('test after load: ', model.predict(X_test[0:1]))
# 模型预测值
predictY = model.predict(X[:])
predictY= np.asarray(predictY)
predictY = np.reshape(predictY,(200))
# 绘图
plt.figure('Accuracy')
plt.plot(X,Y,'ro') # plot绘制折线图
plt.plot(X,predictY,'b^')
plt.draw() # 显示绘图
plt.pause(20) #显示20秒
plt.savefig("Accuracy.jpg") #保存图象
plt.close() #关闭图表
红色的点是真实的数据分布,绿色的点是模型预测出来的数据,迭代300轮效果:
800轮:
1500轮:
3000轮:
keras 入门模型训练的更多相关文章
- Keras入门(六)模型训练实时可视化
在北京做某个项目的时候,客户要求能够对数据进行训练.预测,同时能导出模型,还有在页面上显示训练的进度.前面的几个要求都不难实现,但在页面上显示训练进度当时笔者并没有实现. 本文将会分享如何在K ...
- Keras入门(四)之利用CNN模型轻松破解网站验证码
项目简介 在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字. 让我们一起回顾一下那篇文 ...
- Keras入门(二)模型的保存、读取及加载
本文将会介绍如何利用Keras来实现模型的保存.读取以及加载. 本文使用的模型为解决IRIS数据集的多分类问题而设计的深度神经网络(DNN)模型,模型的结构示意图如下: 具体的模型参数可以参考文章 ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- keras入门(三)搭建CNN模型破解网站验证码
项目介绍 在文章CNN大战验证码中,我们利用TensorFlow搭建了简单的CNN模型来破解某个网站的验证码.验证码如下: 在本文中,我们将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的 ...
- Keras入门(一)搭建深度神经网络(DNN)解决多分类问题
Keras介绍 Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow.Theano.MXNet以及CNTK.Keras 为支持快速实验而生,能够把 ...
- keras 入门整理 如何shuffle,如何使用fit_generator 整理合集
keras入门参考网址: 中文文档教你快速建立model keras不同的模块-基本结构的简介-类似xmind整理 Keras的基本使用(1)--创建,编译,训练模型 Keras学习笔记(完结) ke ...
- Keras序列模型学习
转自:https://keras.io/zh/getting-started/sequential-model-guide/ 1.顺序模型是多个网络层的线性堆叠. 你可以通过将网络层实例的列表传递给 ...
- 谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 ...
随机推荐
- NHibernate & INotifyPropertyChanged
One of the things that make NHibernate easy to use is that it fully support the POCO model. But one ...
- vue-cli中config目录下的index.js文件详解
vue-cli脚手架工具config目录下的index.js解析 转载自:http://www.cnblogs.com/ye-hcj/p/7077796.html // see http://vuej ...
- HDU - 6435 Problem J. CSGO 2018 Multi-University Training Contest 10 (二进制枚举+思维)
题意:有N个主武器(MW)和M个副武器(SW),每个武器都有自己的S值,和K个附加属性xi.要选取一对主副武器搭配,搭配后获得的性能由该公式得出: 求获得最大的性能为多少. 分析:由于|xm - xs ...
- caffe训练自己的数据集
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直 ...
- windows下的DeepLearning环境搭建:Theano的安装
我的系统版本:windows8.1 64位 安装theano需要安装python.numpy等很多东西,为了简便,我这里用的是Anaconda 首先,清理电脑上的所有有关python的组件(可不清理, ...
- mybatis入门学习记录(一)
过硬的技术本领,可以给我们保驾护航,飞得更高.今天开始呢.我们就一起来探讨使用mybatis的好处. 首先我们一起来先看看原生的JDBC对于数据库的操作,然后总结其中的利弊,为学习mybatis奠定基 ...
- Deep Learning(深度学习)学习系列
目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征 4.1.特征表示的粒度 4.2.初级(浅层)特征表示 4.3.结构性特征表示 4.4 ...
- MySQL数据库表分区功能详解
1.什么是表分区? mysql数据库中的数据是以文件的形势存在磁盘上的,默认放在/mysql/data下面(可以通过my.cnf中的datadir来查看),一张表主要对应着三个文件,一个是frm存放表 ...
- quartz(3)--spring整合quartz入门案例
第一步:导入jar <!-- quartz --> <dependency> <groupId>org.quartz-scheduler</groupId&g ...
- python学习(一)——python与人工智能
最近在朋友圈转起了一张图.抱着试一试的心态,我肝了些课程.都是与python相关的. 课程一:你不知道的python 讲师:王玉杰 (混沌巡洋舰联合创始人 & web ...