C++ 迭代器 基础介绍

迭代器提供对一个容器中的对象的访问方法,并且定义了容器中对象的范围。迭代器就如同一个指针。事实上,C++的指针也是一种迭代器。但是,迭代器不仅仅是指针,因此你不能认为他们一定具有地址值。例如,一个数组索引,也可以认为是一种迭代器。

除了使用下标来访问 vector 对象的元素外,标准库还提供了另一种访问元素的方法:使用迭代器(iterator)。迭代器是一种检查容器内元素并遍历元素的数据类型。

标准库为每一种标准容器(包括 vector)定义了一种迭代器类型。迭代器类型提供了比下标操作更通用化的方法:所有的标准库容器都定义了相应的迭代器类型,而只有少数的容器支持下标操作。因为迭代器对所有的容器都适用,现代 C++ 程序更倾向于使用迭代器而不是下标操作访问容器元素,即使对支持下标操作的 vector 类型也是这样。

容器的 iterator 类型

每种容器类型都定义了自己的迭代器类型,如 vector:

vector<int>::iterator iter;

这符语句定义了一个名为 iter 的变量,它的数据类型是 vector<int> 定义的 iterator 类型。每个标准库容器类型都定义了一个名为 iterator 的成员,这里的 iterator 与迭代器实际类型的含义相同。

术语:迭代器和迭代器类型

程序员首次遇到有关迭代器的术语时可能会困惑不解,原因之一是由于同一个术语 iterator 往往表示两个不同的事物。一般意义上指的是迭代器的概念;而具体而言时指的则是由容器定义的具体的 iterator 类型,如 vector<int>。

重点要理解的是,有许多用作迭代器的类型,这些类型在概念上是相关的。若一种类型支持一组确定的操作(这些操作可用来遍历容器内的元素,并访问这些元素的值),我们就称这种类型为迭代器。

各容器类都定义了自己的 iterator 类型,用于访问容器内的元素。换句话说,每个容器都定义了一个名为 iterator 的类型,而这种类型支持(概念上的)迭代器的各种操作。

begin 和 end 操作

每种容器都定义了一对命名为 begin 和 end 的函数,用于返回迭代器。如果容器中有元素的话,由 begin 返回的迭代器指向第一个元素:

vector<int>::iterator iter = ivec.begin();

上述语句把 iter 初始化为由名为 vector 操作返回的值。假设 vector 不空,初始化后,iter 即指该元素为 ivec[0]。

由 end 操作返回的迭代器指向 vector 的“末端元素的下一个”。“超出末端迭代器”(off-the-end iterator)。表明它指向了一个不存在的元素。如果 vector 为空,begin 返回的迭代器与 end 返回的迭代器相同。

由 end 操作返回的迭代器并不指向 vector 中任何实际的元素,相反,它只是起一个哨兵(sentinel)的作用,表示我们已处理完 vector 中所有元素。

vector 迭代器的自增和解引用运算

迭代器类型定义了一些操作来获取迭代器所指向的元素,并允许程序员将迭代器从一个元素移动到另一个元素。

迭代器类型可使用解引用操作符(dereference operator)(*)来访问迭代器所指向的元素:

*iter = 0;

解引用操作符返回迭代器当前所指向的元素。假设 iter 指向 vector 对象 ivec 的第一元素,那么 *iter 和 ivec[0] 就是指向同一个元素。上面这个语句的效果就是把这个元素的值赋为 0。

迭代器使用自增操作符向前移动迭代器指向容器中下一个元素。从逻辑上说,迭代器的自增操作和 int 型对象的自增操作类似。对 int 对象来说,操作结果就是把 int 型值“加 1”,而对迭代器对象则是把容器中的迭代器“向前移动一个位置”。因此,如果 iter 指向第一个元素,则 ++iter 指向第二个元素。

由于 end 操作返回的迭代器不指向任何元素,因此不能对它进行解引用或自增操作。

迭代器的其他操作

另一对可执行于迭代器的操作就是比较:用 == 或 != 操作符来比较两个迭代器,如果两个迭代器对象指向同一个元素,则它们相等,否则就不相等。

迭代器应用的程序示例

假设已声明了一个 vector<int> 型的 ivec 变量,要把它所有元素值重置为 0,可以用下标操作来完成:

// reset all the elements in ivec to 0

for (vector<int>::size_type ix = 0; ix != ivec.size(); ++ix)

ivec[ix] = 0;

上述程序用 for 循环遍历 ivec 的元素,for 循环定义了一个索引 ix ,每循环迭代一次 ix 就自增 1。for 循环体将 ivec 的每个元素赋值为 0。

更典型的做法是用迭代器来编写循环:

// equivalent loop using iterators to reset all the elements in ivec to 0

for (vector<int>::iterator iter = ivec.begin();iter != ivec.end(); ++iter)

*iter = 0;  // set element to which iter refers to 0

for 循环首先定义了 iter,并将它初始化为指向 ivec 的第一个元素。for 循环的条件测试 iter 是否与 end 操作返回的迭代器不等。每次迭代 iter 都自增 1,这个 for 循环的效果是从 ivec 第一个元素开始,顺序处理 vector 中的每一元素。最后, iter 将指向 ivec 中的最后一个元素,处理完最后一个元素后,iter 再增加 1,就会与 end 操作的返回值相等,在这种情况下,循环终止。

for 循环体内的语句用解引用操作符来访问当前元素的值。和下标操作符一样,解引用操作符的返回值是一个左值,因此可以对它进行赋值来改变它的值。上述循环的效果就是把 ivec 中所有元素都赋值为 0。

通过上述对代码的详细分析,可以看出这段程序与用下标操作符的版本达到相同的操作效果:从 vector 的第一个元素开始,把 vector 中每个元素都置为 0。

本节给出的例子程序,如果 vector 为空,程序是安全的。如果 ivec 为空,则 begin 返回的迭代器不指向任何元素——由于没有元素,所以它不能指向任何元素。在这种情况下,从 begin 操作返回的迭代器与从 end 操作返回的迭代器的值相同,因此 for 语句中的测试条件立即失败。

const_iterator

前面的程序用 vector::iterator 改变 vector 中的元素值。每种容器类型还定义了一种名为 const_iterator 的类型,该类型只能用于读取容器内元素,但不能改变其值。

当我们对普通 iterator 类型解引用时,得到对某个元素的非 const(2.5 节)。而如果我们对 const_iterator 类型解引用时,则可以得到一个指向 const 对象的引用(2.4 节),如同任何常量一样,该对象不能进行重写。

例如,如果 text 是 vector<string> 类型,程序员想要遍历它,输出每个元素,可以这样编写程序:

// use const_iterator because we won't change the elements

for (vector<string>::const_iterator iter = text.begin();iter != text.end(); ++iter)

cout << *iter << endl; // print each element in text

除了是从迭代器读取元素值而不是对它进行赋值之外,这个循环与前一个相似。由于这里只需要借助迭代器进行读,不需要写,这里把 iter 定义为 const_iterator 类型。当对 const_iterator 类型解引用时,返回的是一个 const 值。不允许用 const_iterator: 进行赋值

for (vector<string>::const_iterator iter = text.begin();iter != text.end(); ++ iter)

*iter = " ";     // error: *iter is const

使用 const_iterator 类型时,我们可以得到一个迭代器,它自身的值可以改变,但不能用来改变其所指向的元素的值。可以对迭代器进行自增以及使用解引用操作符来读取值,但不能对该元素赋值。

不要把 const_iterator 对象与 const 的 iterator 对象混淆起来。声明一个 const 迭代器时,必须初始化迭代器。一旦被初始化后,就不能改变它的值:

vector<int> nums(10);  // nums is nonconst

const vector<int>::iterator cit = nums.begin();

*cit = 1;  // ok: cit can change its underlying element

++cit;  // error: can't change the value of cit

const_iterator 对象可以用于 const vector 或非 const vector,因为不能改写元素值。const 迭代器这种类型几乎没什么用处:一旦它被初始化后,只能用它来改写其指向的元素,但不能使它指向任何其他元素。

const vector<int> nines(10, 9);  // cannot change elements in nines

// error: cit2 could change the element it refers to and nines is const

const vector<int>::iterator cit2 = nines.begin();

// ok: it can't change an element value, so it can be used with a const vector<int>

vector<int>::const_iterator it = nines.begin();

*it = 10; // error: *it is const

++it;     // ok: it isn't const so we can change its value

// an iterator that cannot write elements

vector<int>::const_iterator

// an iterator whose value cannot change

const vector<int>::iterator

迭代器的算术操作

除了一次移动迭代器的一个元素的增量操作符外,vector 迭代器(其他标准库容器迭代器很少)也支持其他的算术操作。这些操作称为迭代器算术操作(iterator arithmetic),包括:

iter + n

iter - n

可以对迭代器对象加上或减去一个整形值。这样做将产生一个新的迭代器,其位置在 iter 所指元素之前(加)或之后(减) n 个元素的位置。加或减之后的结果必须指向 iter 所指 vector 中的某个元素,或者是 vector 末端的后一个元素。加上或减去的值的类型应该是 vector 的 size_type 或 difference_type 类型(参考下面的解释)。

iter1 - iter2

该表达式用来计算两个迭代器对象的距离,该距离是名为 difference_type 的 signed 类型 size_type 的值,这里的 difference_type 是 signed 类型,因为减法运算可能产生负数的结果。该类型可以保证足够大以存储任何两个迭代器对象间的距离。iter1 与 iter2 两者必须都指向同一 vector 中的元素,或者指向 vector 末端之后的下一个元素。

可以用迭代器算术操作来移动迭代器直接指向某个元素,例如,下面语句直接定位于 vector 中间元素:

vector<int>::iterator mid = vi.begin() + vi.size() / 2;

上述代码用来初始化 mid 使其指向 vi 中最靠近正中间的元素。这种直接计算迭代器的方法,与用迭代器逐个元素自增操作到达中间元素的方法是等价的,但前者的效率要高得多。

任何改变 vector 长度的操作都会使已存在的迭代器失效。例如,在调用 push_back 之后,就不能再信赖指向 vector 的迭代器值了。

C++ 迭代器 基础介绍的更多相关文章

  1. Web3D编程入门总结——WebGL与Three.js基础介绍

    /*在这里对这段时间学习的3D编程知识做个总结,以备再次出发.计划分成“webgl与three.js基础介绍”.“面向对象的基础3D场景框架编写”.“模型导入与简单3D游戏编写”三个部分,其他零散知识 ...

  2. Node.js学习笔记(一)基础介绍

    什么是Node.js 官网介绍: Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js us ...

  3. Node.js 基础介绍

    什么是Node.js 官网介绍: Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js us ...

  4. 1、git基础介绍及远程/本地仓库、分支

    1. Git基础介绍 基于Git进行开发时,首先需要将远程仓库代码clone到本地,即为本地仓库.后续大部分时间都是基于本地仓库上的分支进行编码,最后将本地仓库的代码合入远程仓库. 1.1. 远程仓库 ...

  5. git基础介绍

    git基础介绍 这是git操作的基础篇,是以前的写的操作文档,就没有进行手打,直接把图片贴进来了,你们担待哈,有不正确的地方可以指正出来,我将在第一时间去修改,多谢哈! 一.文件状态:git系统的文件 ...

  6. OSPF基础介绍

    OSPF基础介绍 一.RIP的缺陷 1.以跳数评估的路由并非最优路径 2.最大跳数16导致网络尺度小 3.收敛速度慢 4.更新发送全部路由表浪费网络资源 二.OSPF基本原理 1.什么是OSPF a& ...

  7. iOS系统及客户端软件测试的基础介绍

    iOS系统及客户端软件测试的基础介绍 iOS现在的最新版本iOS5是10月12号推出,当前版本是4.3.5 先是硬件部分,采用iOS系统的是iPad,iPhone,iTouch这三种设备,其中iPho ...

  8. 高通camera结构(摄像头基础介绍)

    摄像头基础介绍 一.摄像头结构和工作原理. 拍摄景物通过镜头,将生成的光学图像投射到传感器上,然后光学图像被转换成电信号,电信号再经过模数转换变为数字信号,数字信号经过DSP加工处理,再被送到电脑中进 ...

  9. Erlang基础 -- 介绍 -- Wordcount示例演示

    在前两个blog中,已经说了Erlang的历史.应用场景.特点,这次主要演示一个Wordcount的示例,就是给定一个文本文件,统计这个文本文件中的单词以及该单词出现的次数. 今天和群友们讨论了一个问 ...

随机推荐

  1. 利用opencv3中的kmeans实现抠图功能

    kmeans算法主要用来实现自动聚类,是一种非监督的机器学习算法,使用非常广泛.在opencv3.0中提供了这样一个函数,直接调用就能实现自动聚类,非常方便. 函数原型: C++: double km ...

  2. 从0开始学Java——@override的作用

    早上跟着<jsp&Servlet学习笔记>来学习jsp,在使用eclipse创建了一个servlet类之后,发现自动创建的类和书上相比,doGet方法的前面少了@override, ...

  3. [CareerCup] 10.1 Client-facing Service 面向客户服务器

    10.1 Imagine you are building some sort of service that will be called by up to 1000 client applicat ...

  4. java heep space错误解决办法

    1.双击tomcat 2.Open launch configuration 3.Argument 4. VM arguments中添加:-Xmx1024M -Xms512M -XX:MaxPermS ...

  5. Linux下线程池的理解与简单实现

    首先,线程池是什么?顾名思义,就是把一堆开辟好的线程放在一个池子里统一管理,就是一个线程池. 其次,为什么要用线程池,难道来一个请求给它申请一个线程,请求处理完了释放线程不行么?也行,但是如果创建线程 ...

  6. Javascript日期时间总结

    写这篇文章,总结一下前端JavaScript遇到的时间格式处理. 1 C#时间戳处理 从后台返回的C#时间为:/Date(-62135596800000)/,这个是C#的DateTime.MinVal ...

  7. (旧)子数涵数·PS ——素描效果

    一.准备素材(均为在百度上下载的) 二.打开ps,并在ps中打开第一张素材 三.复制图层(好习惯) 四.去色将图像变成黑白,图像->调整->去色,快捷键为Ctrl+Shift+U 五,复制 ...

  8. JAVA中的NIO(二)

    一.内存文件映射 内存文件映射允许我们创建和修改那些因为太大而不能放入内存中的文件.有了内存文件映射,我们就可以假定整个文件都在内存中,而且可以完全把文件当作数组来访问. package com.dy ...

  9. 编写高质量代码改善C#程序的157个建议[勿选List<T>做基类、迭代器是只读的、慎用集合可写属性]

    前言 本文已更新至http://www.cnblogs.com/aehyok/p/3624579.html .本文主要学习记录以下内容: 建议23.避免将List<T>作为自定义集合类的基 ...

  10. JavaScript基础系列目录(2014.06.01~2014.06.08)

    下列文章,转载请亲注明链接出处,谢谢! 链接地址: http://www.cnblogs.com/ttcc/tag/JavaScript%20%E5%9F%BA%E7%A1%80%E7%9F%A5%E ...