BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 2417 Solved: 803
[Submit][Status][Discuss]
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
1 11
4 2
Sample Output
1
数据范围:
对于100%的数据,1 < = N , M < = 10000000
HINT
Source
显然答案为:
于是线性筛出质数,线性推出阶乘,再线性处理处 累乘,最后线性推出逆元;
模p意义下逆元线性推法:(inv[1]=1;) inv[i]=(p-p/i)*inv[p%i]%p;
一开始我好像在BZOJ上被卡常了?
code:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,t,p;
int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define maxn 10000010
int prime[1000001];
bool flag[maxn]={0};
long long inv[maxn];
long long jc[maxn];
long long ans[maxn];
int quick_pow(long long a,int b,int p)
{
int ans=1;
for(int i=b;i;i>>=1,a=(a*a)%p)
if(i&1)ans=(ans*a)%p;
return ans;
}
void get()
{
memset(flag,0,sizeof(flag));
flag[1]=1; inv[1]=1;jc[1]=1;
int cnt=0;
for (int i=2; i<=maxn; i++)
{
jc[i]=jc[i-1]*i%p;
if (i<p) inv[i]=(long long)(p-p/i)*inv[p%i]%p;
if (!flag[i])
prime[++cnt]=i;
for (int j=1; j<=cnt && i*prime[j]<=maxn; j++)
{
flag[i*prime[j]]=1;
if (i%prime[j]==0) break;
}
}
ans[1]=1;
for (int i=2; i<=maxn; i++)
if (!flag[i])
ans[i]=ans[i-1]*(i-1)%p*inv[i%p]%p;
else
ans[i]=ans[i-1];
}
int main()
{
t=read(),p=read();
get();
while (t--)
{
n=read(),m=read();
printf("%d\n",ans[m]*jc[n]%p);
}
return 0;
}
BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元的更多相关文章
- BZOJ 2186 沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 3397 Solved: 1164 [Submit] ...
- BZOJ 2186 沙拉公主的困惑(预处理逆元+欧拉函数)
题意:求1-n!里与m!互质的数有多少?(m<=n<=1e6). 因为n!%m!=0,所以题目实际上求的是phi(m!)*n!/m!. 预处理出这些素数的逆元和阶乘的模即可. # incl ...
- 【BZOJ】2186 沙拉公主的困惑
一道很有价值的题. [解析1]欧几里德算法求乘法逆元,前缀和 [Analysis]O(T n log n). [Sum] ①int运算.假设会超出界,第一个数前要加上(LL)即类型转换. ②gcd不变 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的 ...
随机推荐
- js confirm()方法的使用方法实例
今天学习了js 中confirm的使用方法,confirm() 方法用于显示一个带有指定消息和 OK 及取消按钮的对话框. 如果用户点击确定按钮,则 confirm() 返回 true.如果点击取消按 ...
- NGUI学习笔记汇总
NGUI学习笔记汇总,适用于NGUI2.x,NGUI3.x 一.NGUI的直接用法 1. Attach a Collider:表示为NGUI的某些物体添加碰撞器,如果界面是用NGUI做的,只能这样添加 ...
- 十个Flex/Air疑难杂症及解决方案简略
十个Flex/Air疑难杂症及解决方案简略 转自http://blog.sban.us/40.html 最近去一家台企,对方给我出了十道“难道”:在TileList中如果選擇檔過多,會出現捲軸,當拖動 ...
- Linux下安装使用NMON监控、分析系统性能
背景:今天在LoadRunner11.0中使用rstat监控linux过程中,始终提示如下错: Monitor name :UNIX Resources. Cannot initialize the ...
- js Date日期对象的扩展
// 对Date的扩展,将 Date 转化为指定格式的String// 月(M).日(d).小时(h).分(m).秒(s).季度(q) 可以用 1-2 个占位符, // 年(y)可以用 1-4 个占位 ...
- 一道看似简单的sql需求却难倒各路高手 - 你也来挑战下吗?
转自:http://www.cnblogs.com/keguangqiang/p/4535046.html 听说这题难住大批高手,你也来试下吧.ps:博问里的博友提出的. 原始数据 select * ...
- js 中常用的方法
1..call() 将.call()点之前的属性或方法,继承给括号中的对象. 2.(function(){xxx})() 解释:包围函数(function(){})的第一对括号向脚本返回未命名的函数, ...
- ASP.net MVC自定义错误处理页面的方法
在ASP.NET MVC中,我们可以使用HandleErrorAttribute特性来具体指定如何处理Action抛出的异常.只要某个Action设置了HandleErrorAttribute特性,那 ...
- VBA的一些使用心得
VBA的知识比较零散,因此开一贴记录一下使用VBA时的一些方法和心得.主要针对Excel,参考在这里 1. Collection Class 大部分情况下,Collection Class是比数组(A ...
- 深入了解Ant构建工具 命令
深入了解Ant构建工具 标签: ant工具任务jarjavaclass 2010-05-29 21:16 1346人阅读 评论(2) 收藏 举报 版权声明:本文为博主原创文章,未经博主允许不得转载. ...