In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M N rectangular grid. The constraints for placing cheerleaders
are described below:
There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
There can be at most one cheerleader in a cell.
All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The rst line of input contains a positive integer T 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 M,
N 20 and K 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will rst contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2

【题意】

n行m列网格放k个石子。有多少种方法?要求第一行,第一列,最后一行,最后一列必须有石子。

【题解】

利用容斥原理。可以转到求“第一行、第一列、最后一行、最后一列没有石子”的方案数。

枚举各个集合的组合时可以借助二进制进行枚举

1.第一种二进制枚举

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,sec,k;
int C[][];
const int mod=;
void pre()
{
memset(C,,sizeof(C));
for(int i=;i<=;i++)
C[i][]=; for(int i=;i<=;i++)
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
int main()
{
pre();
scanf("%d",&sec);
for(int z=;z<=sec;z++)
{
scanf("%d%d%d",&n,&m,&k);
int ans=;
for(int i=;i<;i++)
{
int b=,r=n,c=m;
if(i&){r--;b++;}
if(i&){r--;b++;}
if(i&){c--;b++;}
if(i&){c--;b++;} if(b%==)ans=(ans+C[r*c][k])%mod;
else ans=(ans+mod-C[r*c][k])%mod;
} printf("Case %d: %d\n",z,ans);
}
return ;
}

2.第二种二进制枚举

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int mod=1e6+; //记得加等号
int c[][];
void get() //求组合数模板 注意细节问题
{
memset(c,,sizeof(c));
for(int i=;i<=;i++)
c[i][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
int main()
{
get();
int t,cas=;
cin>>t;
while(t--)
{
int n,m,k;
cin>>n>>m>>k;//输入别忘了
int sum=;
for(int i=;i<(<<);i++)
{
int flag=,r=n,h=m;
for(int j=;j<;j++)
{
if(i&(<<j))
{
flag++;
if(j==||j==)
r--;
else
h--;
}
}
if(flag&)
sum=(sum-c[r*h][k]+mod)%mod; //c用过了 用h
else
sum=(sum+c[r*h][k]+mod)%mod;
}
printf("Case %d: %d\n",cas++,sum);
}
}

UVA11806-Cheerleaders(容斥原理+二进制)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)

    HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...

  3. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  4. UVa11806 Cheerleaders(容斥原理)

    11806 - Cheerleaders Time limit: 2.000 seconds C Cheerleaders In most professional sporting events, ...

  5. 【UVA11806 Cheerleaders】 题解

    题目链接:https://www.luogu.org/problemnew/show/UVA11806 容斥原理+组合数 正着找合♂fa的不好找,那就用总方案数-不合♂fa的 #include < ...

  6. HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  8. UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)

    UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之 ...

  9. UVA11806 Cheerleaders

    题意 PDF 分析 如果要求是某行某列没有石子很好算,就一个组合数. 然后要求某行某列有,就用容斥原理就行了. 时间复杂度\(O(k^2 + 16T)\) 代码 #include<iostrea ...

随机推荐

  1. USACO 3.2 msquare 裸BFS

    又是个裸BFS... 和西安网赛那道1006一样的,只不过加上了要记录方案.顺便复习map 记录方案直接在bfs队列的结点里加一个vector<int> opt,把从开头一直到当前结点的操 ...

  2. Android学习笔记03-搭建Win8下的Android开发环境

    一  配置环境变量 (绿色文字标出代码,路径换为自己的SDK路径) ANDROID_HOME =  C:\software\adt-bundle-windows-x86_64-20140702\sdk ...

  3. python scrapy 获取华为应用市场APP评论数据

    scrapy入门 四步: 1. 创建一个新的Scrapy Project 2. 定义你需要从网页中提取的元素Item 3. 实现一个Spider类,通过接口完成爬取URL和提取Item的功能 4. 实 ...

  4. .net mvc4 利用 kindeditor 上传本地图片

    http://blog.csdn.net/ycwol/article/details/41824371?utm_source=tuicool&utm_medium=referral 最近在用k ...

  5. Spring学习8- SSH需要的jar包

    struts2 commons-logging-1.0.4.jar 主要用于日志处理 freemarker-2.3.8.jar 模板相关操作需要包 ognl-2.6.11.jar ognl表达示所需包 ...

  6. java对象存储管理

    java程序在内存中的存储分配情况: 堆区: 1.存储的全部是对象,每个对象都包含一个与之对应的class的信息.(class的目的是得到操作指令) 2.jvm只有一个堆区(heap)被所有线程共享, ...

  7. App接口简介

  8. memcache 开发版

    memcache安装,如果是用xampp,一定要下载开发版本 解压开发包,将其中的include目录复制到应用的lampp目录下 tar -zxvf xampp-linux-devel-1.7.2.t ...

  9. Hibernate unsaved-value 属性

    Session的saveOrUpdate方法是由Hibernate来判断被操作对象究竟是一个持久化对象还是临时自由状态对象.这需要在对象映射文件的主键id中定义unsaved-value属性,如果不显 ...

  10. java调用本地方法的时候报错 could not find the main class:xx.program will exit

    如图所示,当在java调用本地方法的时候报错 我的解决办法是把dll文件放到System.out.println(System.getProperty("java.library.path& ...