0 推荐技术
     1)协同过滤:
               (1)基于user的协同过滤:根据历史日志中用户年龄,性别,行为,偏好等特征计算user之间的相似度,根据相似user对item的评分推荐item。缺点:新用户冷启动问题和数据稀疏不能找到置信的相似用户进行推荐。
               (2)基于item的协同过滤:根据item维度的特征计算item之间的相似度,推荐user偏好item相似的item。
               (3)基于社交网络:根据user社交网络亲密关系,推荐亲密的user偏好的item。
               (4)基于模型:LR模型,user和item等维度特征输入给模型训练,label是show:clk,根据预估的pctr进行推荐。DNN模型:见下面。
     2)基于内容的过滤:抽取item的有意义描述特征,推荐user偏好item相似度高的item,个人觉得像基于item的过滤。
     3)组合推荐:根据具体问题,组合其它几种技术进行推荐。
 
 
1 DNN推荐模型
     1)特征工程:
               用户维度:用户id,性别,年龄和职业。
               电影维度:电影id,类型和名称。
     2)模型设计:
          user和item维度特征embedding,各自的全连接网络结构,最顶层是两个维度网络结构的cosin距离代表相似度。所以为user推荐相似度高的item。
          (1) user维度的网络结构,分别将四个特征embedding,并输入全连接层;再将四个全连接输入到全连接层,并定义激活函数为tanh(代码为paddle开源工具)。

          (2)item维度网络结构,同user维度一样,分别将三个特征embedding后输入全连接层,再相加输入全连接层(注意title用了cnn)。
          (3)最顶层将user和item连接,cosin距离代表了user和item的相似度,并且损失函数为mse。

 
2 youtube推荐模型
     1)大规模推荐的系统由于数据量太大,不能直接进行全连接的排序,所以一般大致分为两个阶段:百万级到百级的触发过滤出一部分,再进行细致排序截断阶段。 
     2)百万级到百级的触发过滤,模型采用MLP,训练时softmax做多分类,预测时计算与所有视频的相似度,取top K个视频。我认为label可以是show:clk,类似于LR进行模型推荐。
     3)排序截断阶段:网络结构与触发阶段一样,只是最顶层是LR,做排序;特征工程方面可以更细致,比如视频ID,上次点击时间等等。
 
 
 
 
 
 
 

DNN个性化推荐模型的更多相关文章

  1. 搜索实时个性化模型——基于FTRL和个性化推荐的搜索排序优化

    本文来自网易云社区 作者:穆学锋 简介:传统的搜索个性化做法是定义个性化的标签,将用户和商品通过个性化标签关联起来,在搜索时进行匹配.传统做法的用户特征基本是离线计算获得,不够实时:个性化标签虽然具有 ...

  2. 为什么要用深度学习来做个性化推荐 CTR 预估

    欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:苏博览 深度学习应该这一两年计算机圈子里最热的一个词了.基于深度学习,工程师们在图像,语音,NLP等领域都取得了令人振奋的进展.而深 ...

  3. CSDDN特约专稿:个性化推荐技术漫谈

    本文引自http://i.cnblogs.com/EditPosts.aspx?opt=1 如果说过去的十年是搜索技术大行其道的十年,那么个性化推荐技术将成为未来十年中最重要的革新之一.目前几乎所有大 ...

  4. 从0开始做垂直O2O个性化推荐-以58到家美甲为例

    从0开始做垂直O2O个性化推荐 上次以58转转为例,介绍了如何从0开始如何做互联网推荐产品(回复"推荐"阅读),58转转的宝贝为闲置物品,品类多种多样,要做统一的宝贝画像比较难,而 ...

  5. TensorFlow实战——个性化推荐

    原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78820529 请安装TensorFlow1.0,Python3. ...

  6. 闲聊DNN CTR预估模型

    原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...

  7. Machine Learning With Spark学习笔记(在10万电影数据上训练、使用推荐模型)

    我们如今開始训练模型,还输入參数例如以下: rank:ALS中因子的个数.通常来说越大越好,可是对内存占用率有直接影响,通常rank在10到200之间. iterations:迭代次数,每次迭代都会降 ...

  8. Python个人项目--豆瓣图书个性化推荐

    项目名称: 豆瓣图书个性化推荐 需求简述:从给定的豆瓣用户名中,获取该用户所有豆瓣好友列表,从豆瓣好友中找出他们读过的且评分5星的图书,如果同一本书被不同的好友评5星,评分人数越多推荐度越高. 输入: ...

  9. 个性化推荐调优:重写spark推荐api

    最近用spark的mlib模块中的协同过滤库做个性化推荐.spark里面用的是als算法,本质上是矩阵分解svd降维,把一个M*N的用户商品评分矩阵分解为M*K的userFeature(用户特征矩阵) ...

随机推荐

  1. Zookeeper-3.4.9 集群搭建

    这里用了三台主机,系统为CentOS7 1.修改hosts #vim /etc/hosts 172.50.0.31 node1 172.50.0.34 node2 172.50.0.37 node3 ...

  2. python非转基因HTTP请求库--Requests: 让 HTTP 服务人类

    快速上手 迫不及待了吗?本页内容为如何入门 Requests 提供了很好的指引.其假设你已经安装了 Requests.如果还没有,去安装一节看看吧. 首先,确认一下: Requests 已安装 Req ...

  3. ksum问题

    2sum: Given an array of integers, return indices of the two numbers such that they add up to a speci ...

  4. poj 1721 CARDS (置换群)

    题意:给你一个数列,第i号位置的数位a[i],现在将数列进行交换,交换规则为a[i]=a[a[i]]:已知交换s次之后的序列,求原先序列 思路:置换的问题必然存在一个循环节,使一个数列交换n次回到原来 ...

  5. 图文详解linux如何搭建lamp服务环境

    企业网站建设必然离不开服务器运维,一个稳定高效的服务器环境是保证网站正常运行的重要前提.本文小编将会详细讲解Linux系统上如何搭建配置高效的lamp服务环境,并在lamp环境中搭建起企业自己的网站. ...

  6. URL解析器urllib2

    urllib2是Python的一个库(不用下载,安装,只需要使用时导入import urllib2)它提供了一系列用于操作URL的功能. urlopen urllib2.urlopen可以接受Requ ...

  7. 【知识必备】浅淡MVP在Android项目中的实战演习,让代码结构更简单~

    一.写在前面 讲道理,这次是真的笔者很久都没有更新blog了,主要最近维护的框架问题也是层出不穷,而且对技术交流群的解答也让我身心疲惫,所以在这里跟关注我的人说声抱歉,没有定期给你们带来福利,那么这里 ...

  8. NodeJs之fs的读写删移监

    NodeJs版本:4.4.4 fs 文件系统模块是一个封装了标准的 POSIX 文件 I/O 操作的集合.Node.js 文件系统(fs 模块)模块中的方法均有异步和同步版本. 图片的复制与粘贴 创建 ...

  9. 【代码学习】MYSQL数据库的常见操作

    ---恢复内容开始--- ============================== MYSQL数据库的常见操作 ============================== 一.mysql的连接与 ...

  10. System.map详解

    system.map内容格式为:线性地址类型符号 具体内容如下: 00100000 A phys_startup_32 c0100000 T startup_32 c0100000 A _text   ...