题目链接 : ZOJ Problem Set - 3195

题目大意:

求三点之间的最短距离

思路:

有了两点之间的最短距离求法,不难得出:

对于三个点我们两两之间求最短距离 得到 d1 d2 d3

那么最短距离就是 d = ( d1 + d2 + d3 ) / 2

  • 要注意每个数组的范围大小,因为这个问题手抖敲错,TLE+RE一整页/(ㄒoㄒ)/~~
  • 用前向星来保存边和询问,空间卡的也很严
  • 如下图所示:所求路线为紫色,等于蓝色+黄色+绿色之和的一半

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 50005;
const int maxm = 70005;
struct node1 {
int next,to,w;
} e[maxn*2];
struct node2 {
int next,to,id;
} q[maxm*6];
int n,m,head1[maxn],head2[maxn],cnt1,cnt2,vis[maxn],f[maxn],res[maxm*6],dist[maxn];
inline void add1(int u, int v, int w) {
e[cnt1].to=v;
e[cnt1].w=w;
e[cnt1].next=head1[u];
head1[u]=cnt1++;
}
inline void add2(int u, int v, int id) {
q[cnt2].to=v;
q[cnt2].id=id;
q[cnt2].next=head2[u];
head2[u]=cnt2++;
}
inline void init() {
cnt1=cnt2=0;
memset(head1,-1,sizeof(head1));
memset(head2,-1,sizeof(head2));
memset(vis,0,sizeof(vis));
}
inline int Find(int x) {
return x == f[x] ? x : f[x] = Find(f[x]);
}
inline void tarjan(int s) {
vis[s]=1;
f[s]=s;
int t;
for(int i=head1[s]; i!=-1; i=e[i].next) {
if(!vis[t=e[i].to]) {
dist[t]=dist[s]+e[i].w;
tarjan(t);
f[t]=s;
}
}
for(int i=head2[s]; i!=-1; i=q[i].next)
if(vis[t=q[i].to])
res[q[i].id]=dist[s]+dist[t]-2*dist[Find(t)];
}
int main() {
int cnt=0,u,v,w,x,y,z;
while(~scanf("%d",&n)) {
init();
for(int i=1; i<n; ++i) {
scanf("%d %d %d",&u,&v,&w);
add1(u,v,w);
add1(v,u,w);
}
scanf("%d",&m);
m*=3;
for(int i=1; i<=m; ++i) {
scanf("%d %d %d",&x,&y,&z);
add2(x,y,i);
add2(y,x,i);
++i;
add2(x,z,i);
add2(z,x,i);
++i;
add2(y,z,i);
add2(z,y,i);
}
dist[0]=0;
tarjan(0);
if(!cnt) cnt++;
else printf("\n");
for(int i=1; i<=m; ++i) {
printf("%d\n",(res[i]+res[i+1]+res[i+2])/2);
i+=2;
}
}
return 0;
}

zoj 3195 Design the city LCA Tarjan的更多相关文章

  1. ZOJ 3195 Design the city (LCA 模板题)

    Cerror is the mayor of city HangZhou. As you may know, the traffic system of this city is so terribl ...

  2. ZOJ 3195 Design the city LCA转RMQ

    题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...

  3. zoj 3195 Design the city lca倍增

    题目链接 给一棵树, m个询问, 每个询问给出3个点, 求这三个点之间的最短距离. 其实就是两两之间的最短距离加起来除2. 倍增的lca模板 #include <iostream> #in ...

  4. zoj——3195 Design the city

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  5. ZOJ 3195 Design the city 题解

    这个题目大意是: 有N个城市,编号为0~N-1,给定N-1条无向带权边,Q个询问,每个询问求三个城市连起来的最小权值. 多组数据 每组数据  1 < N < 50000  1 < Q ...

  6. ZOJ - 3195 Design the city

    题目要对每次询问将一个树形图的三个点连接,输出最短距离. 利用tarjan离线算法,算出每次询问的任意两个点的最短公共祖先,并在dfs过程中求出离根的距离.把每次询问的三个点两两求出最短距离,这样最终 ...

  7. ZOJ Design the city LCA转RMQ

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  8. [zoj3195]Design the city(LCA)

    解题关键:求树上三点间的最短距离. 解题关键:$ans = (dis(a,b) + dis(a,c) + dis(b,c))/2$ //#pragma comment(linker, "/S ...

  9. 最近公共祖先LCA(Tarjan算法)的思考和算法实现

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

随机推荐

  1. 聊聊 Material Design 里,阴影的那些事儿!

    当你的设计师要求你在某个 View 上增加阴影效果,那你只需要认真阅读本文,阴影的问题就不再是问题. 一.前言 设计师的世界,与常人不同,有时候想要扁平化的风格,有时候又想要拟物化的风格.而在 Mat ...

  2. hbase+springboot+redis实现分页

    实现原理: 1.读取hbase数据每页的数据时多取一条数据.如:分页是10条一页,第一次查询hbase时, 取10+1条数据,然后把第一条和最后一条rowkey数据保存在redis中,redis中的k ...

  3. springmvc+quartz简单实现定时调度

    一.简介:Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用.Quartz可以用来创建简单或为运行十 ...

  4. Java IO编程全解(三)——伪异步IO编程

    转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/7723174.html 前面讲到:Java IO编程全解(二)--传统的BIO编程 为了解决同步阻塞I/O面临 ...

  5. Android 开发笔记___复选框__checkbox

    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout ...

  6. HTML学习笔记 div布局及table布局案例 第三节 (原创)参考使用表

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 问题:编译eshoponcontainers失败,提示error:invalid reference format

    环境: visual studio 2017 v15.4.2,docker ce Version 17.06.0-ce-win19 (12801) 参考问题页: https://github.com/ ...

  8. C#动态获取鼠标坐标

    .Net封装好的方法 int Control.MousePosition.X;int Control.MousePosition.Y; 用API方法 using System.Runtime.Inte ...

  9. Java多线程学习之Lock与ReentranLock详解

    synchronized 是内置锁,而Lock 接口定义的是显示锁,Lock 提供了一种可重入的.可轮询的.定时的以及可中断的锁获取操作. ReenTranLock实现了Lock接口,并提供了与syn ...

  10. 一致性hash算法以及其在分布式系统中的应用(转)

    初始架构