【动态规划】洛谷P1004方格取数
题目描述
设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放
人数字0。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B
某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B
点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个
表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式:
只需输出一个整数,表示2条路径上取得的最大的和。
输入输出样例
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
67
题解:
这道题大体上和我写的传纸条相似
只是要注意(1,1)和(n,n)点是有值的一定要算上
代码如下:
#include<cstdio>
#include<iostream>
using namespace std; int n,x,y,z,map[][],f[][][]; int main()
{
scanf("%d",&n);
for(;;)
{
scanf("%d%d%d",&x,&y,&z);
if(x==&&y==&&z==)break;
map[x][y]=z;
}
for(int i=;i<=*n-;++i)
for(int j=max(,i-n+);j<=min(n,i);j++)
for(int k=max(,i-n+);k<=min(n,i);k++)
{
f[i][j][k]=max(max(f[i-][j][k],f[i-][j-][k]),max(f[i-][j-][k-],f[i-][j][k-]))
+map[j][i-j+]+map[k][i-k+];
if(j==k)f[i][j][k]-=map[j][i-j+];
}
printf("%d",f[*n-][n][n]+map[][]);
}
【动态规划】洛谷P1004方格取数的更多相关文章
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 洛谷P1004 方格取数
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...
- 洛谷 P1004 方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- 洛谷P1004 方格取数-四维DP
题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...
- Codevs 1043 ==洛谷 P1004 方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- 洛谷 P1004 方格取数 【多线程DP/四维DP/】
题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0. ...
- 四维动规 洛谷P1004方格取数
分析:这个题因为数据量非常小,可以直接用四维的DP数组 dp[i][j][k][l]表示第一个人走到位置(i,j),第二个人走到位置[k][l]时所取的数的最大和 状态转移方程可以轻松得出为:dp[i ...
随机推荐
- WinCE的C#编程,对float型进行四舍五入保留两位小数,小数进行四舍五入操作,Math.Round的应用案例。
private float ConvertFloat4Se5Ru(float flotValue) { int iValue = (int)Math.Round(flotV ...
- Spring MVC新手教程(二)
第一篇文章宏观讲了Spring MVC概念,以及分享了一个高速入门的样例. 这篇文章主要来谈谈Spring MVC的配置文件. 首先来谈谈web.xml: web项目启动时自己主动载入到内存中的信息, ...
- c++中虚多态的实现机制
c++中虚多态的实现机制 參考博客:http://blog.csdn.net/neiloid/article/details/6934135 序言 证明vptr指针存在 无继承 单继承无覆盖 单继承有 ...
- 以pfile或者spfile启动时show parameter pfile的不同结果
普通启动: SQL> show parameter pfile NAME TYPE VALUE ------------------------------------ ----------- ...
- jquery 自定义选择器
// HTML 代码 <body> <div id="divid1" class="divclass">白色</div> & ...
- 观未见,行不止 —— Power BI 两周年技术和方案交流圆桌会议纪实
作者:陈希章 发表于 2017年8月13日 2017年8月11日下午两点,Power BI 两周年技术和方案交流圆桌会议如期举行.线上和线下约有100位朋友参加了由我组织和主持的本次活动,在两个小时的 ...
- UML2和建模工具学习总结
软件发展的方向:CS–>BS–>SOA–>BIG DATA 建模的含义: 模型是对现实的简化 从特点视角对系统的一个完整性描述 建模的重要性: 为了更好的理解一个系统 管理复杂度(也 ...
- sourceTree git 忽略指定文件
按照如下步骤执行(终端命令) 1. git status modified: LovegoMall.xcworkspace/xcuserdata/Tiny.xcuserdatad/xcdebugger ...
- Java中的集合概述
Java中的集合类有两个重要的分支,分别是接口Collection(包括List,Set等)和接口Map. 由于HashSet的内部实现原理使用了HashMap,所以我们先来了解Map集合类. 1.H ...
- Find the Maximum sum
Given an array of n elements.Find the maximum sum when the array elements will be arranged in such w ...